
TRS-80® Pascal

A DIVISION OF TANDY CORPORATION
FORT WORTH, TEXAS 76102

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK COMPUTER EQUIPMENT AND SOFTWARE
PURCHASED FROM A RADIO SHACK COMPANY-OWNED COMPUTER CENTER. RETAIL STORE OR FROM A

RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY
I. CUSTOMER OlllGATIONS

A. CUSTOMER assumes full responsibility that this Radio Shack computer hardware purchased (the ··equipment'") , and any copies of Radio
Shack software included with the Equipment or licensed separately (the "Software") meets the specificat1011s. capacity, capabilities.
versatility. and other requirements of CUSTOMER.

B. CUSTOMER assumes fuH responsibility for the condit10n and ettectiveness of the operating environment in which the Equipment and Software
are to function, and for its installation.

II. RADIO SHACK LllllltD WARIWmES AND CONDITIONS Of SALE

A. For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase of the Equipment, RADIO
SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing
defects. THIS WARRANTY IS DNL Y APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM
RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS
AUTHORIZED LOCATION. The warranty is void if the Equipment"s case or cabinet has been opened, or if the Equipment or Software has been
subjected to improper or abnormal use. If a manufacturing defect is discovered during the stated warranty period, the defective Equipment
must be returned to a Radio Shack Computer Center. a Radio Shack retail store, participating Radio Shack franchisee or Radio Shack dealer
for repair, along with a copy of the sales document or lease agreement. The original CUSTOMER'S sole and exdusive remedy in the event of
a defect is limited to the correction of the defect by repair, replacement, or refund of the purchase price, at RADIO SHACK'S election and sole
expense. RADIO SHACK has no obligation to replace or repair expendable items.

B. RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software. except as provided in this
paragraph. Software is licensed on an "'AS IS"' basis, without warranty. The original CUSTOMER'S exclusive remedy. in the event of a
Software manufacturing defect. is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document
received upon license of the Software. The defective Software shall be returned to a Radio Shack Computer Center. a Radio Shack retail store.
participating Radio Shad(franchisee or Radio Shack dealer along with the sales document.

C. Except as provided herein no employee, agent, franchisee. dealer or other person is authorized to give any warranties of any nature on behalf
of RADIO SHACK.

D. Except as provided herem, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIU Of MERCIWITAIIUTY DR FITIIEII FOR A
PARTICULAR PURPOSE.

E. Some states do not allow limitations on how long an implied warranty lasts. so the above limitation(s) may not apply to CUSTOMER

NI. LIMITATION Of UAIILITY

A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON
OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
"'EQUIPMENT" OR ""SOFTWARE"' SOLD. LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITfD TO, ANY
INTERRUPTION OF SERVICE. LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
USE OR OPERATION OF THE "'EQUIPMENT" OR '"SOFTWARE"'. IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR
ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE. LICENSE, USE OR ANTICIPATED USE OF THE "'EQUIPMENT'" OR '"SOFTWARE"' .

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES. RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY
CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR ··EQUIPMENT" OR '"SOFTWARE"'
INVOLVED.

B. RADIO SHACK shall not be liable for any da~es caused by delay in delivering or furnishing Equipment and/or Software.
C. No action arising out of any daimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years

after the cause of action has accrued or more than four (•) years after the date of the Radio Shack sales document for the Equipment or
Software. whichever first occurs.

D. Some states do not allow the limitation or excluSIOll of incidental or consequential damages, so the above limitation(s) or exciusion(s) may
not apply to CUSTOMER.

IV. RADIO IHACII SOnwARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exdusive. paid-up license to use the RADIO SHACK Software on - computer, subject to the following
provisions:
A. Except as otherwise provided in this Software License, applicable copynght laws shall apply to the Software.
B. Trtle to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to CUSTOMER, but not title to

the Software.
C. CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the Software permits this

function.
D. CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on - computer and as is specifically

provided in this Software License. Customer is expressly prohibited from d1sassembhng the Software.
E. CUSTOMER is permitted to make additional copies of the Software 111fy for backup or archival purposes or if additional copies are required in

the operation of - computer with the Software, but only to the extent the Software allows a backup copy to be made. However, for
TRSDOS Software, CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER'S own use.

F. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one copy of the Software for each
one sokl or distributed. The provisions of this Software License shall also be applicable to third parties receiving copies of the Software from
CUSTOMER.

G. All copyright notices shall be retained on all copies of the Software.

V. Al'Pl.lCAIIUTY OF WARRANTY

A. The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and/or
Software License to CUSTOMER or to a transaction whereby RADIO SHACK sells or conveys such Equipment to a third party for lease to
CUSTOMER.

B. The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author. owner and/or licensor of the
Software and any manufacturer of the Equipment sold by RADIO SHACK.

VI. STATE LAW RIGKTI

The warranties granted herein give the orltlNI CUSTOMER specific legal rights, and the orltiNI CUSTOMER may have other rights which vary
from state to state.

I
,•--

;

~

""'~

~ .·

I
•

~. ,~
I

l
• .. -c:·

~ . .

~

I
,,_· ..

:,

'
'

l
ed)

' t.-:'
.

~·

I
..

C --

~

- ~

,-;

' .

•

·,

.

•
. -

~
[
[
f

.. F·,,,,,: .. :t ·"t ::t:<t 1·/)~~-?_:,.,:.:l (:-::~ ;,>,/~.::,::;··::

Important Note to
Model Ill Users

From time tn time. Radio Shack may release new versions of TRSDOS. the
TRS-80 disk operating system. Check with your local Radio Shack or the
TRS-80 Microcomputer News for notices and instructions on these
enhanced versions of TRSDOS.

If you receive a new version of TRSDOS. read the following before making
any mod1f1cations to your existing software packages (applicat ions. lan
guages. or system utilities) :

• Do not convert your Radio Shack software packages for use with the new
version of TRSDOS unless you are instructed to do so.

• Before converting a Radio Shack supplied Model I software package to a
Model Ill format . check to see if Radio Shack provides a Model Ill version
of the package. If so. you should obtain a copy of that version.

• If you re using several different software packages. press the RESET but
ton whenever you change software.

Thank-You 1

llad1elhaell
~ A Division of Tandy Corporation

8759106

TRS-80~ Pascal

COPYRIGHT NOTICES

Model I/III TRS-80 Pascal Manual
CC) 1983 by Alcor Systems
Licensed to Tandy Corporation
All rights reserved

Reproduction or use, without express written
permission from Tandy Corporation and Alcor
Systems of any portion of this manual is
prohibited. While reasonable efforts have been
taken in the preparation of this manual to assure
accuracy, Tandy Corporation and Alcor Systems
assume no liability resulting from any errors or
omissions in this manual or from the use of the
information obtained herein.

Model I/III TRS-80 Pascal Software
CC) 1983 by Alcor Systems
Licensed to Tandy Corporation
All rights reserved

TRSDOS 1.3 Operating System
(C) 1980, 1983 by Tandy Corporation
All rights reserved

TRSDOS 2.3 Operating System
CC) 1979, 1983 by Tandy Corporation
All rights reserved

LOOS is a trademark of Logical Systems Incorporated

IMPORTANT NOTE FOR
MODEL I/III TRS-80 PASCAL USERS

(Catalog Number 26-2211)

It is important to note that when using TRS-80
Pascal with a Model I or Model III, the minimum
system requirements are as follows

* 48K Model I - Two disk drives

* 48K Model III - One disk driye for TRSOOS 1.3 users
Two disk drives for LOOS operating
system users (catalog number 26-2214)

A printer capable of printing at least 80 columns per
line and connecting cable are also recommended.

When using the TRS-80 Pascal, a disk containing
an operating system must be in drive O.

tRSOOS 1.3 is supplied on both Pascal disks for
the Model III. Either disk may be placed in drive
0 and used as a system disk.

The three disks containing the Model I Pascal
system do not contain TRSOOS 2.3 for the Model I.
TRSDOS 2.3 must be supplied by the user.

The TRS-80 Pascal system may also be used under
the the LOOS operating system (floppy or hard disk
versions) on the Model I or III. However, the
Model III version of TRS-80 Pascal must be patched
before use under LOOS. See the BEGINNERS MANUAL
for information on how to patch the TRS-80 Pascal
system for proper operation with LOOS on the Model
III.

NOTICE TO PROGRAMMERS

By purchase of the software product described in
this manual, you have obtained a license to
duplicate the supplied disk files only as
necessary for personal use on your Model I/Ill
Micro-computer.

The complete TRS-80 Pascal Development System
(26-2211) includes Pascal systems for both the
Model I and III. The Model III version also
contains the TRSOOS operating system. None of the
supplied files may be reproduced for resale.

If you intend to sell application programs
developed using TRS-80 Pascal, you must follow
the procedure below to avoid violation of this
license and of copyright laws.

1. Use the PASCAL compiler to translate the
the application program to object code.

2. Use the LINKLOAD utility to link the object code
with the TRS-80 Pascal runtime support and
build a stand alone, executable command file
C/CMD extension).

3. The executable command file may be copied and
sold with no royalty payments required. However,
all programs sold must document the fact that they
contain TRS-80 PASCAL RUNTIME SUPPORT.

HOW TRS-80 PASCAL WORKS

TRS-80 Pascal is a compiled language. This means
that programs must first be translated to object
format before they may be executed.

The first step in developing a program is to enter
the program into the computer and save it to a disk
file. A full screen text editor is supplied to allow
you to create your programs.

The second step is to compile the program. There
are two versions of the compiler which are supplied
for translating your programs to object format. One
version is overlayed while the other is not. The
overlayed version is a little slower but will allow
you to compile larger programs. The compiler generates
an object format file.

The third step is to execute the program. There is
a RUN utility supplied which will execute your compiled
programs. This utility loads and executes object format
files. Another utility, LINKLOAD, is provided which will
allow you to convert object files into stand alone,
executable command files (/CMD extension).

AN OVERVIEW OF THE TRS-80
PASCAL MANUAL

There are seven fundamental sections to this manual. We suggest
that you read through the Beginners guide carefully. The seven
are:

1/ BEGINNERS GUIDE
(1) Takes you through the steps of backing up the system.
(2) Shows how to patch the system for use with LOOS or the

Hard Disk Operating System.
(3) Leads you through the steps of entering and executing a

a simple Pascal program.
(4) Introductory trouble shooting guide.

2/ EDITOR MANUAL
Shows how to use the Blaise text editor in detail.

3/ SYSTEM IMPLEMENTATION MANUAL
Gives specific information on the TRS-80 implementation of Pascal.
Included is more detailed information on:

(1) Compiling and executing programs.
(2) TRS-80 Pascal memory usage.
(3) Using the external library of procedures and functions.

(Graphics, keyboard and system call interfaces)
(4) Using the external library of procedures and functions

to perform dynamic string manipulation.
(5) Using the Random File access routines.
(6) Miscellaneous differences in Alcor Pascal 1.2A and TRS-80

Pascal 2.0.
(7) Miscellaneous patches to modify TRS-80 Pascal.

4/ TUTORIAL
A step by step introduction to Pascal, aimed at people
with some knowledge of a computer language.

5/ LANGUAGE REFERENCE MANUAL
A detailed guide to the TRS-80 Pascal language.

6/ ADVANCED DEVELOPMENT PACKAGE
Contains sections on the use and execution of the Native
Code-generator and Optimizer programs. Explains when and
why to use these utilities.

7/ MASTER CROSS REFERENCE INDEX
A cross reference index for the entire documentation package.

Differences in ALCOR PASCAL (1.2A) and TRS-80 PASCAL (2.0)

A. Additional language features
File buffer variables

(see appendix of the
language reference manual)

GET & PUT procedures

B. Library routines
CALL$ - changed
SETACNM - added
Random file routines

C. Compiler options
INCLUDE
LIST
PAGESIZE
WIDELIST
RANGECHK
PTRCHECK

(see system implementation manual)
(now includes the flag register)
(easier version to use of SET$ACNM)
(now included in RUN/CMD)

(see appendix of the language
reference manual)

D. Miscellaneous (see system implementation manual)
Compiler changes

New error message file (PASCAL/ERR)
80 character source lines now accepted by compiler
New comment to end of line character
LOCATION function now works on procedures & functions
Compiler stack requirements

Linking loader changes
Program prompt removed
Lower case commands accepted
Build to an illegal file trapped

Runtime changes
Generating the End of File character from

the keyboard.
Runtime error message reporting
Break key recognized

Error corrections
Subrange handling
Real formatting

Beginners

Guide

Beginners Guide

Table Of Contents

Making a backup • 1

File configuration ••••••••••••••••••••••••• 4

Overall system view •••••••••••••••••••••••• 7

The Pascal patch program (PATCHER)
Patching LOOS and the HARD DISK
OPERATING SYSTEM

......... 9

Using the editor •••••••••••••••••• •• • •• • • ••• 13

Entering a program •••••••••••••••••••••••• 15

Compiling the program • • •••••••••••••••••••• 16

Running the program ••••••••••••••• ••• ••••• 18

Alternate symbol representations ••••••••••• 19

Troubleshooting guide ••••••••••••••••••••• 20

Common error messages ••••••••••••••••••• • • • 22

Common programming mistakes ••••••••••••••• 23

MAKING A TRS-80 PASCAL BACKUP

The Model III version of TRS-80 Pascal comes
with a TRSDOS 1.3 operating system on both supplied
disks. Model III owners should follow these
instructions to ensure safe backup copies of
TRS-80 Pascal.

Model III, 2 drive system

1. Place the master "Model III version" disk labeled
"Disk 1 of 2" into drive O and press the orange
reset key on the computer.

2. TRSDOS will prompt you to enter the date and time.
Enter the correct date and if desired, the correct
time. The prompt for the time may be answered
by simply pressing the <enter> key. The following
is an example:

Enter Date (MM/DD/YY}? 01/10/83 <enter>
Enter Time (HH:MM:SS}? <enter>
TRSDOS Ready

3. Place a new blank diskette in drive number 1 and
type BACKUP <enter>.

4. You will then be prompted to specify the source and
destination drive numbers and the password. Answer
the prompts as follows:

SOURCE Drive Number? 0 <enter>
DESTINATION Drive Number? 1 <enter>
SOURCE Disk Mas...ter Password? PASSWORD <enter>

5. The message** Backup Complete** followed by
TRSDOS Ready indicates the backup process has finished.
Repeat steps 3 and 4 using the master "Model III
version" disk labeled "Disk 2 of 2" in drive O and
then store the master disks in a safe place and use
the backup copies.

- 1 -

Model III, 1 drive system

1. Place the master •Model lII version• disk
labeled •Disk 1 of 2• into the drive and press the
orange reset key on the computer.

2. TRSDOS will prompt you to enter the date and time.
Enter the correct date and if desired, the correct
time. The prompt for the time may be answered
by simply typing the <enter> key. The following
is an example:

Enter Date (MM/DD/YY)? 01/10/83 <enter>
Enter Time (HH:MM: SS)? <enter>
TRSDOS Ready

3. Type BACKUP <enter> and answer the prompts as follows:

SOURCE Drive Number? 0 <enter>
DESTINATION Drive Number? 0 <enter>
SOURCE Disk Master Password? PASSWORD <enter>

4. You will then be prompted to insert the DESTINATION
diskette. Replace the master disk with a new blank
disk and press the <enter> key. The new disk will be
formatted and then you will be prompted to insert the
SOURCE Diskette. Replace the new disk with the master
disk and press the <enter> key.

5. The backup process now begins. You will alternately
be prompted to insert either the SOURCE or DESTINATION
diskette. Insert the master disk when prompted to insert
the SOURCE diskette and the new disk when prompted to
insert the DESTINATION diskette. After inserting the
disk, press the <enter> key. This disk swapping must
be done several times after which the message
** Backup Complete** followed by TRSDOS Ready will
appear indicating the backup process has finished.

6. Repeat steps 3 through 5 using the master "Model III
version" disk labeled "Disk 2 of 2" and then store
the master disks in a safe place and use the backup
copies.

- 2 -

The Model I version of TRS-80 Pascal does not
include an operating system. Model I users must
supply their own copy of TRSOOS 2.3 and then follow
the instructions below to ensure safe backup copies
of TRS-80 Pascal.

Model I, 2 drive system

1. Place the master "Model I version• disk labeled
"Disk l of 3• into drive 1.

2. Place a TRSOOS 2.3 operating system disk in
drive O and press the reset button at the top
left side of the keyboard.

3. When DOS READY appears on the screen, type
BACKUP <enter>.

4. Replace the TRSDOS 2.3 disk in drive O with a
a new blank disk and answer the prompts as follows.
Specify the current date for the last prompt.

SOURCE DRIVE NUMBER? l <enter>
DESTINATION DRIVE NUMBER? 0 <enter>
BACKUP DATE (MM/DD/YY) ? 01/10/83 <enter>

5. When the backup process is finished, the message
BACKUP COMPLETE followed by HIT 'ENTER' TO CONTINUE
will appear on the screen.

6. Repeat steps 2 through 5 using the master
"Model I version• disk labeled "Disk 2 of 3" and
again using the master "Model I version" disk labeled
"Disk 3 of 3". Store the master disks in a
safe place and use the backup copies.

- 3 -

FILE CONFIGURATION

After working copies of the master disks have been made, you
should configure development disks. Program development
requires a certain amount of free disk space. The supplied
files should be arranged so that you may edit, compile, and
execute programs. The number of development disks required
to provide a suitable arrangement of files depends on your
particular computer system. Following are examples of
suitable file configurations for different computer systems.
You may want to keep a set of backup diskettes intact with
all files, and use another set of backups for development
purposes.

TRS-80 MODEL III

Both of the supplied model III disks contain the complete
TRSDOS 1 . 3 operating systems. Most of the TRSDOS files are
not necessary for Pascal program development and may be
deleted to obtain more free disk space . See the PURGE
command in your TRS-80 DISK SYSTEM OWNER'S MANUAL. If
desired, the following TRSDOS files may be deleted using the
PURGE command.

BASIC/CMD
CONVERT/CMD

XFERSYS/CMD
LPC/CMD

MEMTEST/CMD
HERZSO/BLD

The disk labeled "Disk 1 of 2" contains the following Pascal
files in addition to the TRSDOS files.

PASCAL/CMD
RUN/CMD
ERRORS/DAT
ED/CMD
HELP/HLP
KEY/HLP
CMD/HLP
TRSLIB/PCL
STRINGS/PCL
PATCHER/CMD
DATABASE/PCL
LOOS/PAT

non-overlayed compiler
utility for executing object files
error message file for compiler
editor
help file for editor
help file for editor
help file for editor
external declarations for system routines
external declarations for string routines
patch program for applying patches
sample Pascal program
patch file for model III LOOS users

The disk labeled "Disk 2 of 2" contains the following Pascal
files in addition to the TRSDOS files.

PASCALB/CMD
PASCAL/OVl
PASCAL/OV2
PASCAL/OV3
PASCAL/OV4
LINKLOAD/CMD
CODEGEN/CMD
CODEINIT/DAT
OPTIMIZE/CMD
TRSLIB/OBJ
STRINGS/OBJ
RANDOM/OBJ

overlayed compiler
overlay 1
overlay 2
overlay 3
overlay 4
utility for linking object files
utility for generating Z80 code
data file for CODEGEN/CMD
utility for making object files smaller
object code for system routines
object code for string routines
object code for random file routines

- 4 -

Example 2 Drive Model III Configuration

Follow the steps below to complete the Model III
two drive configuration.

l) Place "Disk l of 2" into drive 0
2) Place "Disk 2 of 2" into drive 1
3) Type COPY ERRORS/DAT:0 :1 <enter>

The two Model III disks may now be used as
development disks. Either of the development
disks may now be used in drive 0. Since there is
not much free space left on either disk, a new
formatted disk should be used in Drive 1 as a data
disk to store the Pascal source, object, or
command files being developed. "Disk 1 of 2"
contains all the files necessary to edit, compile,
and run a Pascal program. It is not necessary to
use "Disk 2 of 2" until you begin developing
larger programs, building /CMD command files, or
using separate compilation.

Example 1 Drive Model III Configuration

For single drive systems, it is necessary to leave
enough free space on each development disk to store the
Pascal source, object, or command files being developed.
You should configure at least four development disks
for single drive systems.

First, make an extra backup copy of both "Disk 1 of 2"
and "Disk 2 of 2". You may now free data space on each
disk by deleting specific files. See your TRS-80 DISK
SYSTEM OWNERS'S MANUAL (26-2111) for information on how to
delete files using the PURGE command. You should delete
all the TRSDOS files (see the previous page) from each of
the four disks.

Take one of the "Disk 1 of 2" disks and delete the
following files: the editor help files HELP/HLP, KEY/HLP,
and CMD/HLP, the external declaration files STRINGS/PCL
and TRSLIB/PCL, the patch program PATCHER/CMD, and the
LDOS patch file LDOS/PAT. This should leave you with
enough space to edit, compile, and execute the DATABASE/PCL
program. You will have to delete the DATABASE/OBJ created
by the compiler each time before you edit the DATABASE/PCL.
Otherwise, there will not be enough space for the editor
temporary file.

Take the second "Disk 1 of 2" disk and delete the
following files: the DATABASE/PCL program, PATCHER/CMD,
and LOOS/PAT. This disk can be used to develop new
programs. There will not be much free space available.
You may want to delete the editor help files and external
declaration files to provide additional space.

- 5 -

Take one of the "Disk 2 of 2" disks and delete the
following files: CODEGEN/CMD, OPTIMIZE/CMD, and
CODEINIT/DAT. This disk may then be used to compile
larger programs or to link together separately compiled
program segments.

Take the other "Disk 2 of 2" disk and delete all the
files execept CODEGEN/CMD, OPTIMIZE/CMD, and CODEINIT/DAT.
This disk may be used to reduce object code size or
increase object code execution speed.

There are many other possible configurations. You may
want to configure several more disks with fewer files to
provide more disk space for development. For example, you
may want a disk which just contains the editor and associated
help files and another disk which just contains the compiler.

Example 2 drive Model I Configuration

On the Model I, you may use the three disks as
initially configured. You should make several copies of
your TRSOOS 2.3 disk and use these disks to store the
programs being developed. If desired, you may delete all
the TRSOOS files to provide more free disk space. You
should then do all development with your TRSOOS disk in
drive O and one of the three Pascal disks in drive 1. The
developed programs should be stored on drive O.

As an alternative, you may configure several TRSOOS 2.3
disks and copy specif1c Pascal files onto each system disk.
Drive O will then contain the operating system and Pascal files,
freeing Drive 1 to store the programs being developed.

note: The above configuration also applies to LOOS. However,
you cannot delete all the LOOS system files. See your
LOOS manual for a description of the files which may be
deleted.

- 6 -

Beginners guide

Overall system view

The program development process may be visualized by the
following diagram:

1
1

enter 1
Program 1

=======V========
1

1 Blaise 1
1 TEXT EDITOR

save
source
program

1
1
1
1
1
1
1
1
1

USER
========

Ru 1'11 , l;UIU,, un

ED <cmd> LINKLOAD <cmd>

PASCAL<cmd>

1
translate 1
program 1

1
1

run
program or 1
build load 1
module

===:o::a:::sV::s====
1 1
1 TRS-80 Pascal 1
1 COMPILER
=z===============

LOADER
PROGRAMS

====::==-=-====

read
source
program

save
object
program

1
1
1
1

1
1
1
I
1
1
1

z.:::::::======-.2vz=:z::::.=

RUN<cmd> 1
load object 1
and execute 1

1
1 1 !::s===s==s=====! 1

------------------>!
1

DISKETTE
STORAGE

=========•=z:a::::

- 7 -

1 1
!<-----------------

LINKLOAD <cmd>
load object and
build TRSDOS
/CMD file

IMPORTANT
=========

IF YOU INTEND TO EXECUTE THE TRS-80 PASCAL SYSTEM
WITH THE SUPPLIED TRSOOS 1.3 OPERATING SYSTEM ON
THE MODEL III OR WITH YOUR TRSOOS 2.3 OR LOOS
5.1.x OPERATING SYSTEM ON THE MODEL I, YOU MAY
SKIP THE FOLLOWING PAGES ON PATCHING.

MODEL I LOOS USERS
=====~===z========

TRS-80 Pascal MUST NOT BE PATCHED for use with
LOOS on the model I. LOOS on the model I is
capable of reading TRSOOS 2.3 formatted diskettes.
The configured diskettes may be used directly.
However, if you have the Model I double density
modification, you may want to copy the configured
diskettes to a double density formatted diskette
to provide more free space. The Pascal file
RUN/CMD must be renamed to prevent conflict with
the LOOS RUN command.

(eg. RENAME RUN/CMD TO PRUN/CMD)

Model I Hard Disk Users:

Use the BACKUP utility to copy the Pascal files from the
floppy diskettes to the hard disk. The OLD parameter
should be specified with the BACKUP command.

(eg. BACKUP :4 :0 (OLD))

This command will prompt you with the name of each file
on the floppy diskette in drive 4. Type Y <enter> for
each file you wish to transfer to logical drive O of the
hard disk.

MODEL III LOOS USERS
==-===========--=====

TRS-80 Pascal MUST BE PATCHED for use with LOOS on
the Model III. Failure to do so will cause
unpredictable results when you try to execute Pascal
command files. All patching should be performed
while using TRSOOS 1.3 (supplied). Follow the
steps outlined on the following pages to patch the
Pascal system for use with LOOS on the Model III.

NOTICE - LOOS IN THIS MANUAL REFERS TO THE FLOPPY
BASED VERSIONS 5.1.x AND THE RADIO SHACK HARD DISK
OPERATING SYSTEM.

- 8 -

THE TRS-80
PASCAL PATCH PROGRAM

The TRS-80 Pascal system includes a program for patching disk
files. This program is used to apply all current and future
patches to the Pascal system. All patches to TRS-80 Pascal
files should be applied with the PATCHER program since it
contains extensive error checking to assure that patches
have been applied correctly. The following is an outline
of the patch process.

******************************~****************************
* WARNING *
* NEVER APPLY PATCHES TO THE MASTER DISKETTES. MAKE A *
* BACKUP COPY AND APPLY PATCHES TO THE COPY. *

1. Make a backup copy of the master diskette.
Do not apply patches to the master diskette.

2. The text of the patches should be entered into a file
using the text editor if in printed form.

3. Load the diskette containing the file named PATCHER/CMD
and type PATCHER <enter>. After the program has been loaded,
the diskette containing PATCHER may be removed.

4. The program will prompt for the drive number to be used
for the patching process. All diskettes that are to be
patched must be inserted into this drive during the
patch process.

5. Enter the name of the file or device to be used for the
listing. The patch program will echo a patch file listing
to this file and will display any error messages there.
Instead of a filename, :L may be entered. This causes
the listing to go to the printer.

6. Enter the name of the file containing the patches. This is
known as the patch control file. The patch control file must
remain on-line during the entire patching process. On two
drive systems, the patch control file should be on the system
diskette. (The patch control file required to modify TRS-80
Pascal for operation with LOOS on the Model III is on
"Disk 1 of 2" in a file named LOOS/PAT.)

- 9 -

7. Change diskettes when prompted to do so. If any errors
are detected, error messages will be displayed and the
patches will not be applied. If a patch file requires
diskettes to be changed, and they are not, error messages
will be generated for those files not present on the
diskette in the patch drive. They may be ignored if those
files are not required to be patched.

NOTE - Once a file has been sucessfully patched, it may not be
patched again using the same patch control file. This is
because all patch control files contain information about the
text that was previously in the file to be patched. Once the
file has been altered, then that information is no longer valid.
If you are not sure that the patches have been applied
properly, make a backup of the master diskette and re-apply the
patches using the patch control file.

Example Patch Session

The following is an example of how to patch the Pascal System
for execution under LOOS on the Model III. The patching should
be performed using TRSOOS 1.3. After the patching is complete,
the files may be converted to LOOS format using the CONV utility
of LOOS. The example assumes a two drive model III computer
system with a printer connected.

1) Insert a disk containing TRSOOS 1.3 into drive 0.
2) Insert "Disk 1 of 2" into drive 1.
3) Type COPY LDOS/PAT:l :0 <enter>.
4) Type PATCHER <enter>.

The following information will prompted for at the terminal.
Answer the prompts as shown. When prompted to load disk
PASCALl, insert "Disk 1 of 2" into drive 1. When prompted
to load disk PASCAL2, insert "Disk 2 of 2" into drive 1.

ENTER DISK DRIVE FOR PATCHES: l <enter>
LISTING= :L <enter>
ALCOR SYSTEMS DISK PATCH UTILITY 1.0 (C) 1982
PATCHES= LOOS/PAT <enter>
LOAD DISK: PASCAL! INTO DRIVE 1

PRESS <ENTER> WHEN READY <enter>
LOAD DISK: PASCAL2 INTO DRIVE 1

PRESS <ENTER> WHEN READY <enter>
STACK USED= 514 OF 4032 HEAP USED= 1574 OF 29832
TRSOOS Ready

- 10 -

Since :L was specified for the listing file, the patch listing
will be printed. The following listing should be printed
as shown on your printer.

ALCOR SYSTEMS DISK PATCH UTILITY 1.0 (C) 1982

; TRS80 MODEL III FOR LOOS
;
F, RUN/CMD, PASCAL!
P,lSBC,0578,0001,00,13
P,ODFF,OSAC,0001,03,00
W,F4DC .
I

F, PASCAL/CHO, PASCAL!
P,134C,054A,0001,00,13
P,OEDl,0554,0001,03,00
W,FS62
;
F, ED/CHO, PASCAL!
P,llED,0570,0001,00,13
P,OBD5,055E,0001,03,00
W,FS25 .

I

F, PATCHER/CHO, PASCAL!
P,OFA1,054E,0001,00,13
P,0B16,0529,0001,03,00
W,FS89
;
F, LINKLOAD/CMD, PASCAL2
P,15BC,0578,0001,00,13
P,ODFF,05AC,0001,03,00
W,F4DC .
I

F, PASCALB/CHD, PASCAL2
P,OD5C,056E,0001,00,13
P,1575,0SlE,0001,03,00
W,FS74
;
F, CODEGEN/CMD, PASCAL2
P,lllA,0535,0001,00,13
P,OC9F,0583,0001,03,00
W,F548 . ,
F, OPTIMIZE/CHO, PASCAL2
P,lllA,0535,0001,00,13
P,OC9F,0583,0001,03,00
W,F548
E

- 11 -

5) Insert a copy of your LOOS operating system disk
into drive O.

6) Delete all non-essential operating system files.
(See your LOOS manual for information on
configuring a minimum operating system disk.
Do not delete CONV/CMD.)

7) Make a backup of your minimum operating system disk.
8) Insert a minimum LOOS operating system disk into

drive 0.
9) Insert the patched "Disk 1 of 2" into drive 1.
9) Type CONV :1 :0 <enter>.

10) You will prompted as to whether or not to convert
each of the files from drive 1 to drive 0. Answer
N <enter> for all TRSOOS files and Y <enter> for
all Pascal files.

11) Repeat steps 8 through 10 using the other minimum
configured LOOS operating system disk in drive 0
and "Disk 2 of 2" in drive 1.

12) Rename the file RUN/CMD on the backup of "Disk 1 of 2"
to prevent conflict with the LOOS RUN command.
(eg. RENAME RUN/CMD TO PRUN/CMD)

MODEL III HARD DISK USERS

The converted diskette files may be copied from the
floppy diskettes to the hard disk by using the BACKUP
utility. Specify the OLD parameter with the BACKUP
command. Do not copy the LOOS system files to the hard
disk.

(eg. BACKUP :4 :0 (OLD)

The above command will cause a prompt for each file
on the diskette in drive 4. Type Y <enter> for each file
you wish to copy from the floppy diskette in drive 4
to drive O of the hard disk.

- 12 -

USING THE EDITOR

Programs are entered through the use of the Blaise text editor.
The disk containing the file ED/CMD must be in one of the drives
before the editor may be used. Before using the editor, you
should check the amount of free disk space available. The
editor creates a temporary file during an edit session which is
a copy of the file being edited. There must be enough free disk
space to store both the temporary file and the file being edited
or the editor will not be able to save the file at the end of
the edit session. If there is very little disk space available,
you should delete any unnecessary files to provide adequate disk
space.

The editor may be used to create a new file or edit an existing
file. A new file is created by simply typing ED <enter>. The
editor is then loaded and the symbol *EOB is displayed at the
top left corner of the screen. An existing file may be edited
by typing ED filename <enter> where filename is any valid TRSDOS
file name. After the editor is loaded, it loads the first 100
lines of the specified file into a buffer and displays the first
16 lines on the screen. The *EOB symbol will appear after the
last line loaded into the buffer.

The editor uses a fixed size text buffer capable of storing
approximately 13000 characters. The *EOB symbol is used to
indicate the "end of buffer". When creating a new file, the
buffer starts out empty. Before text may be entered, it is
necessary to insert blank lines into the buffer. Blank lines
are inserted into the buffer by simultaneously pressing the
SHIFT and@ keys. After inserting several blank lines, you may
simply type in text. The <enter> key causes the cursor to be
positioned to the beginning of the next line. The arrow keys
may be used to position the cursor any place in the text. The
arrow keys cause the cursor to move one character in the
direction indicated by the arrow Cleft, right, up, or down).

There are several other editor commands which aid the edit
process. Normally, when a character is typed, the character
under the cursor is replaced by the typed character. However,
if you first press the CLEAR key, followed by the I key, the
editor will insert subsequent typed characters at the current
cursor position. This provides a way of inserting characters in
the middle of a line. The character under the cursor may be
deleted by simultaneously pressing the SHIFT and "left arrow"
keys. The line under the cursor may be deleted by
simultaneously pressing the SHIFT and "right arrow" keys. Since
the text buffer is large enough to hold several screens of text,
there are commands provided which allow you to scroll the text
through the screen display. Pressing the CLEAR key followed by
the "up arrow" key causes the display to scroll toward the
beginning of the buffer. Pressing the CLEAR key followed by the
"down arrow" key causes the display to scroll toward the end of
the buffer. Many other commands are explained in the EDITOR
Manual. For now though, these commands are sufficient to allow
you to edit.

- 13 -

The editor has a mode of operation called command mode. Command
mode allows you to execute a specific set of editor commands by
typing a command name. You must enter command mode in order to
execute the command which causes the edit session to terminate.

Command mode is entered by typing the CLEAR key followed by the
C key. When CLEAR C is typed, angle brackets<> will appear at
the bottom left corner of the screen and the cursor will be
placed to the right of the brackets. The editor is now waiting
for you to type a command name followed by the <enter> key.
There are two commands which will cause the edit session to
terminate. One command is EXIT and the other is QUIT. EXIT
should be used if you wish to save the edited text to a file.
QUIT should be used is you wish to terminate the edit session
without saving the edited text. While in command mode, the left
arrow key may be used to delete the character prior to the
cursor if you make a typing mistake.

If you wish to save the edited text, type EXIT <enter>. The
editor then prompts you to enter a file name as follows:
<EXIT>FILE: Type in any valid TRSDOS file name, including drive
specifier if desired. For example, TEST/PCL:l would save the
edited text to the file TEST/PCL on drive number 1. Pascal
source files should always be given the extension /PCL. If no
drive is specified, the editor will place the file on the lowest
numbered non-write protected drive with free space. You should
always make sure that there is enough free space on the drive to
hold two copies of the file being edited. As the editor is
exiting, it will first display EXIT IN PROGRESS at the bottom of
the screen. While this message is being displayed, the editor
is writing the text to a temporary file named TOll/TMP. Next
the editor will display RENAME FILE at the bottom of the screen.
While this message is being displayed, the editor is copying the
temporary file T0ll/TMP to the file specified when the EXIT
command was executed. Once the copying has completed with no
errors, the editor deletes T0ll/TMP. If an error should occur,
T0ll/TMP may be used to recover the file.

If a file was specified when the editor was initially executed,
it is not necessary to specify a file name for the EXIT command.
Simply type <enter> to the prompt and the text will be written
to the file specified with the ED command. Of course, a drive
number could have been specified with the ED coirunand. For
example, ED TEST/PCL:l will cause the editor to load the file
TEST/PCL from drive number 1. From the editor command mode,
simply press <enter> when prompted with <EXIT>FILE: and the text
will be saved to file TEST/PCL on drive 1. The editor also will
use drive 1 for the temporary file T0ll/TMP.

If you wish to discard the edited text, type QUIT <enter>. The
editor then prompts you as follows: <QUIT>REALLY? Type Y <enter>
if you wish to terminate the edit session and return to TRSDOS.
Type N <enter> if you wish to return to the edit session.

- 14 -

ENTERING A SIMPLE PASCAL PROGRAM

Now that you know how to use the editor, a simple Pascal
program may be created. From the TRSDOS Ready prompt, type
ED <enter> and the editor is loaded. Since no file was
specified, *EOB will appear at the top left corner of the
screen. Press SHIFT@ four times to enter four blank lines
into the buffer. Then type in the following text .

PROGRAM TEST;
BEGIN

WRITELN(' THIS IS MY FIRST PROGRAM.)
END.
*EOB

Once the text as been entered as shown above, type CLEAR C to
enter command mode. Execute the exit command and answer the
two prompts as shown below.

<> EXIT<enter >

<EXIT >FILE: TEST/ PCL<enter>

The program will be saved to the file TEST/PCL and the editor
will exit to the operating system.

Now you are ready to compile the program. At this point you
should be aware of a couple of special keys which may be used
when a Pascal program, including the compiler, is executing.
All Pascal programs periodically scan the keyboard to see if
a key is being pressed. If the"@ key" is being pressed,
the program will stop execution until the <enter> key is pressed.
Pressing the <enter> key resumes execution . During a compile,
this feature will allow you to continually stop and resume the
compile while viewing the listing being generated.
If the "BREAK key" is being pressed, the program will terminate
and return to the operating system. This feature provides a
way of terminating a compile if an error is detected and you
wish to correct it before continuing the compile.

- 15 -

COMPILING THE PROGRAM

The compiler must now be used to translate the Pascal
program to object format. Once in object format, the program
may be executed. At the TRSDOS Ready prompt, type the following
to compile the program created on the previous page.

PASCAL TEST <enter>

The Pascal compiler will load and execute. It will open
the file TEST/PCL and begin reading a line at a time from the
file. As each source line is read, it is translated to object
format . The compiler will write the object formatted code to
the file TEST/OBJ. The compiler also sends a listing to the
screen as it compiles. The listing will show if there are any
errors in the program being compiled. The below listing was
generated by compiling the sample test program.

TRS80 PASCAL VER: 02.00.00 13000000 00:00:21 03/12/83 PAGE 1
---l PROGRAM TEST;

2 BEGIN
3 WRITELN(' THIS IS MY FIRST PROGRAM.)

***** A202
4jEND.

***** A 20, 4, 13
4 ERRORS DETECTED

4 ')' EXPECTED
13 'END' EXPECTED
20 ' , • EXPEc·rED

202 STRING CONSTANT CANNOT SPAN LINES

STACK USED= 1715 OF 4096 HEAP USED= 3070 OF 5832

As you can see, the compiler detected some errors in the
program. The compiler always writes an error message line
following the line where the error was detected. The error
message line begins with 5 asterisks to clearly indicate that
an error was detected. It also contains a pointer to the
line above at the approximate location of the error. Following
the pointer is an error code telling the type of error detected.
At the end of the listing, all generated error codes are listed
with a brief explanation of the error.

All Pascal programs, including the compiler, use a section
of memory which is divided into two parts. One part is the
stack and the other part is the heap. The stack is used to
store most variables. The heap is used to store dynamic
variables and file descriptors. When the compile is finished,
the amount of stack and heap used out of the total amount
available is displayed on the screen.

- 16 -

Because of the context in a Pascal program, a single
error in the program can generate multiple error messages.
Usually, the first error code will describe the real cause
of the error. In this example, the first error detected
is on line 3, error code 202. Error code 202 says that a
string constant cannot span lines. This error was caused by
the failure to include a closing quote for the string in line
3. The other 3 detected errors are a side effect of the first
error. The compiler automatically creates a file named

PASCAL/ERR

when errors are detected in a program. Only the lines
containing errors, along with the error message line, are
written to this file.

The program should now be corrected before it is executed.
The following will cause the editor to execute and display
file TEST/PCL on the screen.

ED TEST/PCL <enter>

Move the cursor to the third line of the program and add a
closing quote just prior to the right parenthesis. The
third line should then look as follows.

WRITELN(1 THIS IS MY FIRST PROGRAM. ')

Type CLEAR C to enter command mode and type EXIT <enter> to
exit the editor. The prompt <EXIT>FILE: may be answered by
simply pressing the <enter> key.

Now the program may be compiled once again by typing the
following.

PASCAL TEST <enter>

The following listing will be sent to the screen as the
program is compiled.

TRS80 PASCAL VER: 02.00.00 13000000 00:00:21 03/12/83 PAGE 1

1 PROGRAM TEST:
2 BEGIN
3 WRITELN(' THIS IS MY FIRST PROGRAM.')
4IEND.

TEST
NO ERRORS DETECTED

NO ERRORS DETECTED

STACK USED= 1715 OF 4096 HEAP USED= 3070 OF 5832

This time no errors were detected. The program is a legal
Pascal program. Now that the program has been compiled with
no errors, it may be executed.

- 17 -

RUNNING THE PROGRAM

Once the program has been compiled without errors, it can
be executed with the RUN command. At the TRSOOS Ready prompt,
type the following to execute the sample program.

RUN TEST <enter>

The files used in a Pascal program are logical files. This
means that the name of a file used in the program is not
necessarily the same name as the actual physical disk file
name. When a file is opened within a Pascal program, a
prompt will appear on the screen. The prompt identifies the
logical file name used in the program. You should then type
in the actual disk file name which will be used when the
program performs input or output to that logical file. This
provides you with the ability to direct input and output to
different files or devices each time the program is executed.

Two standard predeclared logical files in Pascal are INPUT
and OUTPUT. These files are automatically opened when a
program is executed. Therefore, each time you execute a
program, the following prompts appear on the screen.
(note: the SETACNM library procedure, explained in the
System Implementation Manual, may be used to eliminate file
prompts)

INPUT =
OUTPUT =

The prompts occur for these two logical files whether they
are used in the program or not. If you type in a file name,
the program will use that file name when performing input or
output. You may also simply type the <enter> key in reply
to a logical file prompt. If the logical file is an input
file, input will be received from the keyboard. If the
logical file is an output file, output will be sent to the
screen (or CRT).

The sample program uses only the logical file OUTPUT. This
logical file is implicitly used by the Writeln procedure. You
may simply press the <enter> key for both the INPUT and OUTPUT
file prompts. The Writeln procedure will then cause the
following to be printed on the screen.

This is my first program.

When a program terminates, (ie. finishes execution
normally), the address of the last instruction executed is
displayed on the screen. Following this is the amount of
stack and heap used by the program. The stack and heap are
explained in the System Implementation manual. The
miscellaneous patch section of the system manual also
explains how to prevent this information from being
displayed.

- 18 -

The file names that you type to direct Pascal input and
output are the same format as normal TRSOOS file names. The
disk drive specification is optional as in TRSOOS. Devices
may also be specified instead of a file name. For example,
the name -of the line printer is ":L". The name of the
terminal, which is the keyboard for input and the CRT for
output, is ":C". Simply typing the <enter> key is
equivalent to typing ":C". There is also a dummy device.
If a logical file is associated with ":D", then no actual
output occurs. This is useful if you wish to discard
certain outputs. For example, the listing may be discarded
during a compile or you might discard some of the output
generated by a program when it is executed.

The Pascal compiler always uses the extension PCL if the
file name is specified when the compiler is executed. The
compiler may also be executed by simply typing PASCAL
without a file name. If executed in this manner, the
compiler will prompt for the Pascal SOURCE file name, the
file to use for the LISTING, and the file to use for the
OBJECT. Either a file name or a device may be specified.
If a file name is specified, the complete file name,
including extension, must be used Cie. the compiler does
not use default extensions).

The RUN utility uses the default extension OBJ if no
extension is specified in the file name. You may also
specify an extension if the object code is in a file named
with an extension other than OBJ. For example, RUN TEST/ COD
might be used.

Alternate Symbol Representations

The TRS-80 Pascal compiler recognizes alternate representations
of certain symbols because the TRS-80 keyboard does not generate
them. Symbols with alternate representations are:

symbol
{
}

[

1

- 19 -

alternate
(*
*)

@

(.
.)

TROUBLE SHOOTING GUIDE

Miscellaneous Errors

1. Problem - While editing a file, the latter part of a file
is found to be missing.
Answer - Need to use the APPEND command to page the latter
part of the file into the text buffer. See the editor manual.

2. Problem - Upon exiting the editor, a PHYSICAL IO error
message is displayed.
Answer - The diskette was full or not in the drive. See the
editor manual for recovery of the original file from the
T0ll/TMP work file.

3. Problem - During a compile, the Pascal compiler abnormally
terminates with a FATAL ERROR - OUT OF HEAP, or OUT OF STACK
Answer - The compiler does not have enough memory space due
to: Ca) Too large a program. (Use PASCALS version)
(b) There are high memory drivers in place that limit the
amount of memory space the compiler has, (such as the KSM
driver in LOOS or a printer spooler). Remove the high
memory driver or use PASCALB. See the System Manual for
various ways to invoke the compiler with alternate
stack parameters.

4. Problem - When executing your compiled program with the
RUN command, or a command (/CMD) file built with the LINKLOAD
utility, it abnormally terminates with the FATAL ERROR -
OUT OF HEAP, or OUT OF STACK.
Answer - Increase the stack specification when invoking the
RUN command or increase the stack specification when building
the command file with the LINKLOAD utility. See the system
manual.

5. Problem - After executing the compiler using the long form
where the OBJECT and LISTING files are specified by the user,
the original source file suddenly contains object code.
Answer - The source file was specified as the object file
when invoking the Pascal compiler.

- 20 -

6. When executing under LOOS, the RUN command is invoked
with a Pascal object code file as an argument, and the error
message: Load file format error is displayed.
Answer - The Pascal RUN command must be renamed to RUNP or
something that does not conflict with the LOOS RUN
command. You are attempting to execute Pascal object code
with the LOOS RUN utility.

7. Problem - During an edit, you try to insert the external
Pascal declarations for the TRSLIB library by specifying
individual function and procedure names, and nothing is
inserted by the editor.
Answer - All of the declarations are contained in a file
named TRSLIB/PCL. This file must be inserted to place the
declarations into the source file.

8. Problem - The compiler continues to compile after the end
of the entered source code is encountered and garbage text
is displayed to the listing.
Answer - The Pascal system files have not been patched
for execution under LOOS on the Model III.

- 21 -

COMMON ERROR MESSAGES

(By the Compiler)

13 END expected - There must be an END for every BEGIN
in a Pascal program.

52 THEN expected - IF statements require use of the reserved
word THEN.

54 DO expected - FOR statements require use of the keyword DO.

104 undeclared identifier - All variables must be declared in
a Pascal program.

119 semicolon expected - The preceding declaration or statement
is not terminated by a semicolon(;).

127 type of actual parameter does not match formal parameter -
An attempt to call a procedure or function with an argument
that does not match the type of the formal parameter.
In special cases, the type matching requirements may be
overridden by using the type transfer operator.

129 type conflict of operands in an expression - An attempt
to use an operator with two variables of different types.

154 actual parameter must be a variable - Using a constant instead
of a variable when calling a procedure whose formal parameter
is preceded by VAR.

Unexpected End of File - A period does not follow the last
END of the program or a comment is missing the closing
comment symbol.

(Runtime Error Messages)

The error codes discussed above are generated by the compiler
due to an error in the Pascal source program. There are times
when the compiler may generate a fatal error message that is
not due to an error in the source program. These are called
runtime errors because they are detected by the runtime that
is included with all Pascal programs, including the compiler.
The following are examples . of runtime errors.

RUNTIME ERROR 01 OUT OF STACK
(Caused by trying to compile or run too large a program)
RUNTIME ERROR 02 OUT OF HEAP
(Caused by trying to compile or run too large a program)
RUNTIME ERROR 09
(file not found or disk error)

Note: Explanation of COMPILER and RUNTIME error codes may be
found in the appendix of the Language Reference Manual.

- 22 -

COM.MON PROGRAMMING MIS·rAKES

1. For variable types to match in expressions and not generate
compiler error messages, they must be explicitly declared to
be of the same type in the declaration section. For example:

PROGRAM TEST;
VAR A:ARRAY[l .. S]OF CHAR;

B:ARRAY[l .. SJOF CHAR;
BEGIN

A:=B;
END.

will generate a type conflict message by the compiler although
the types appear to match. The following example will not
generate an error message and is perfectly legal in Pascal.

PROGRAM TEST;
VAR A,B:ARRAY[l .. S]OF CHAR;
a_EGIN

A:=B;
END.

or

PROGRAM TEST;
TYPED= ARRAY[l .. S]OF CHAR;
VAR A:D;

B:D;
BEGIN

A:=B;
END.

2. A procedure declaration that has non-NAMED types in the
parameter list is illegal in Pascal (ie. the following
is illegal).

PROGRAM TEST;
PROCEDURE EXAMPLE(VAR A:ARRAY[l .. S]OF CHAR); EXTERNAL;

BEGIN
END.

The following is legal:

PROGRAM TEST;
TYPED= ARRAY[l .. S]OF CHAR;

PROCEDURE EXAMPLE(VAR A:D); EXTERNAL;
BEGIN
END.

3. Placing a ; (semicolon) character before the ELSE part
of an IF THEN ELSE statement is illegal.

- 23 -

Editor

Editor Manual

Table Of Contents

Editor file configuration
The editor work file

Text buffer management

1

2

Removing disks during an edit session ..•••.. 3

Edi tor Commands • . • • • • • • • • • . . • • • • • • • • • • • • 4
Creating a new file

Compose mode commands • • • 5
Cursor movement. Text insertion, deletion.
Parameter settings.

Command mode 7

Command mode command explanations 8

Editor command summary •.•................... 11

ASCII character chart •••••••••..•••••....••. 12

GETTING STARTED

PLACEMENT OF EDITOR ON THE DISK

The editor system is composed of the main editor file labeled ED/CMD
and several help files labeled with the /HLP file extension name.
These files may be copied to any disk for use. The help files
contain HELP messages that may be viewed while in the text editor.
They are not required to be present. If they are not present on the
same disk as the ED/CMD program, no help information may be
obtained during the edit session.

EDITOR WORK FILE

The text editor creates a new text file that is a copy of the file
being edited. All editing changes are made to this work file.

< T0ll/TMP > This is a protection feature to prevent any
fatal hardware or software errors during the edit from destroying
the edited file. After the editor successfully exits, and
consistency checks have been made, the work file becomes the new
copy of the edited file. The old copy is then deleted. This
requires that there always be a minimal amount of disk space
available on the disk where the work file exists. If during an
exit, the disk on which the work file or the original file is
placed runs out of disk space, the editor will flag an error message
allowing an abort or appropriate actions to be taken.
If an error occurs during the RENAME part of the exit command,
(ie. while the work file is being copied back to the original file)
then T0ll/TMP should contain the edited file. It may be used to
restore the original file should the original become damaged.
The work file is placed on the lowest numbered non-write
protected drive unless a file name with a drive specifier was
used when invoking the editor. In this case, the work file is
placed on the specified drive.

TYPE OF FILES THAT MAY BE EDITED

New or old files may be created or edited. The size of files that
may be edited is only limited by the disk space available on a
disk. Files may not be split across disk boundaries. This means that
the whole file must reside on a single disk. The file name
syntax is the same as that allowed by TRSOOS. The text editor files are
compatible with normal TRSOOS Basic files, TRS-80 Pascal source and
object files, or any other ASCII formatted files that comply with
TRSDOS file conventions .

- 1 -

TEXT BUFFER MANAGEMENT

The editor maintains a fixed size buffer for storing text.
The buffer will hold approximately 13000 characters.
All editor commands except for specific file commands
operate only on the text in this buffer. When editing
very large files, the file must be edited a section
at a time. Starting at the beginning of the file, a section
is loaded into the text buffer. Before loading another
section of the file into the buffer, buffer space must be made
available by writing the text out to a work file. Then the
next section may be loaded into the buffer. This process
may be repeated until the whole file has been loaded and
edited.

When editing an existing file, the editor loads the first
100 lines only. This leaves ample buffer space for adding
more lines and performing the various editing functions. If
the file is longer than 100 lines, the APPEND command may be
used to load more text from the file into the buffer. With
this command, you specify how many lines to copy from the
file to the buffer. The copying begins one line past the
last line previously loaded from the file. The text being
copied from the file is appended to the end of the text in
the buffer. If the file is very large, it is possible for
the buffer to become full. If this happens, a MEMORY
EXHAUSTED message is displayed. The WRITE command must then
be used to write some of the text in the buffer back out to
a work file. With this command, you specify how many lines
to copy from the buffer to the work file. The copying
begins with the first line in the buffer and continues until
either the buffer is empty or the specified number of lines
have been written. Once lines have been written from the
buffer to the work file, they may not be edited again during
the current edit session. The following diagram illustrates
this process.

edit text
--------------- APPEND ------------- WRITE ----------

! original file I ------> I text buffer I -----> I work file I

If the editor is exited before the entire file has been
loaded into the buffer, the editor will copy the remaining
lines in the original fite to the work file.

The editor displays one of two symbols at the end of the
text buffer. The EOB symbol signifies the end of the
buffer. If editing a pre-existing file, the symbol
displayed will be EOF if all text has been loaded from the
original file into buffer.

- 2 -

-- Blaise text editing manual --

REMOVAL OF DISKS FROM DRIVES
DURING AN EDIT SESSION

The disk containing the ED/CMD file may be removed after an
edit session has begun, subject to the following restrictions:

(1) There always must be a disk
with an operating system installed
in the designated system drive. This
disk may be swapped during the
edit session as long as the· new disk
contains a valid operating system,
and the change does not violate
(2)-(4).

(2) Removal does not cause the disk
containing the editor workfile
to be removed.

(3) If help files are removed, then
no HELP messages will be available.

(4) Before exiting the editor, or
appending lines to the text buffer,
the disk containing the original
file is replaced in the drive.

* If the above rules are followed, you
may change disks in order to use
the INSERT FILE command in the editor.

- 3 -

EDITOR COMMANDS

Editor commands may be accessed by two different methods . One is
by entering certain pre-defined key sequences, and the other is by
entering a mode that allows command names to be typed.

A key sequence command is executed by (1) simply pressing a
labeled key, or (2) pressing the CLEAR key, then a labeled key, or
(3) holding the shift key down while pressing a labeled key.

There are certain commands that are only accessible from command
mode. They primarily are used for setting editor parameters or for
performing commands that require prompted input from the user. For
all following discussions, the mode which allows key sequence
commands shall be referred to as the compose mode, and command name
entry as the command mode.

All editing is performed on text that is loaded into a text
buffer. This buffer holds new text data entered or may append text
data from an existing TRSDOS file. As editing is performed, the
updated buffer may be written to the file as desired.

HOW TO START

To execute the text editor, simply type from TRSDOS Ready:

ED filename <enter>

NEW FILES

To create a new file, leave the filename field blank. The edi tor
will clear a new text buffer. The screen will be cleared and will
display *EOB at the top left corner. A cursor will be displayed
in column one of the display. The editor automatically enters the
compose mode upon startup. A blank line must be inserted into the
empty text buffer before any text may be inserted. A blank line may
be inserted by pressing the shift key while at the same time pressing
the key labeled"@" • The blank line will always be inserted before
the cursor line. After several blank lines have been inserted into
the buffer, text may be typed directly into the buffer. The text is
always entered into the buffer beginning at the position of the cursor.
If the cursor is positioned over any text, as each new character is
entered, the old character is overwritten. If text is to be inserted
in the middle of an existing line, simply press the clear key
followed by the I key . Any new text typed will be inserted at the
cursor position causing the rest of the line to move to the right.
The insert setting is canceled when any command such as a cursor
movement is performed .

- 4 -

COMPOSE MODE

CURSOR MOVF.MENT

The following denotes a key sequence.
Shift/key====> press shift and key simultaneously.
Clear/key====> p~ess clear key, then labeled key.

The cursor may be positioned any place on the screen by pressing
any of the following labeled keys while in the compose mode.

<enter>

Clear/~

Clear/~

Clear/ t

Clear/~

Clear/T

Clear/B

Clear/H

Cursor up one line. If the cursor is
at the top of screen, then the screen
scrolls one line.

Cursor down one line. If the cursor is
at the bottom of the screen, then the
screen scrolls one line.

Cursor to the right one character. If
cursor is at the right edge of the
screen, then no movement occurs.

Cursor to the left one character. If
the cursor is at the left edge of the
screen, then no movement occurs.

Cursor to the beginning
of the next line.

Cursor to the beginning of line.

Cursor to the end of line.

Scroll the display one page
toward the beginning of file.

Scroll the display one page
toward the end of the file.

Tab right . If the cursor is at the
right edge of the screen, then the
cursor wraps around to the leftmost
tab stop.

Tab left. If the cursor is at the
left edge of the screen, then the
cursor wraps around to rightmost
tab stop.

Positon cursor to the top left
of display. (Home)

- 5 -

Shift/~
Shift/~
Clear/K

Clear/I

Shift/@

Clear/D

Clear/A

Clear/S

Clear/Y

Clear/?

Clear/C

TEXT DELETION

Delete character under the cursor.
Delete the entire line under the cursor.
Delete text from cursor to the
end of the line.

TEXT INSERTION

Enter insert character mode.
This allows text to be inserted
anyplace in an existing text line.
Place the cursor at the desired
location, press Clear/I, and
type in the text.

Insert a blank line into the text
buffer.

Duplicate the line above onto the cursor
line. Text to the right of the cursor
position is replaced by a copy of the
text on the line above.

EDITOR PARAMETERS AND SETTINGS

Toggle the auto indent setting. Auto
indent causes the enter key to align
the cursor with the first non-blank
on the next line. If the next line is
blank, the cursor is placed below the
first non-blank on the line above. This
feature is useful when Pascal programming
with indentation.

Sets the typewriter like tab stop
at the current cursor position. The editor
has preset tab stops which may be cleared
in command mode using the TABS command.

If a tab exists at the current cursor
position then it is cleared.

Display the amount of unused memory
available for text buffering .

Enter command mode.

- 6 -

Clear/G

Clear/O

Clear/F

Clear/R

TEXT MODIFICATION

Merge the line after the cursor with
the cursor line.

Split the cursor line into two lines
at the cursor position.

Search forward in the text buffer
for the next occurrence of the string
in the find string buffer. The find
string buffer is loaded with the
search string in the command .-node by
the FIND command.

Search forward in the text buffer for
the next occurrence of the string in
the find buffer and replace with the
contents of the replace buffer. The
buffers are loaded with strings in
the command mode by the REPLACE
command.

SPECIAL CHARACTERS

Certain characters are not present on the TRS-80 keyboard. They
may be generated by the following clear key sequence.

Sequence

clear
clear
clear
clear
clear
clear
clear

1
2
3
4
5
6
7

COMMAND MODE

Character

{
}

I

If while in the compose mode a Clear/C key sequence is typed, the
editor will enter command mode. A pair of angle brackets along
with the cursor should appear at the bottom left corner of the display.
There are 16 additional commands that are available in command
mode that are not accessible in the compose mode. They are
primarily used for setting editor parameters or require prompted
information from the user. After a command has been executed in the
command mode, the editor will automatically re-enter the compose mode
and place the cursor at its new position in the text. Command name
abbreviations are allowed for all commands.

When in command mode, the command line may be edited using the left
arrow key. Pressing the left arrow will delete the last character on
the line and move the cursor back one column. Command entry may be
aborted by pressing shift/left arrow. This will return the editor
to compose mode.

- 7 -

COMMAND PARAMETERS

Some commands that may be accessed in command mode require user
input parameters for execution. All such commands may be invoked by
two different methods in the c omma nd mode. Beginners may simply type
the command name and then press the enter key. If any parameters are
required, the editor will prompt the user for the parameters. All
parameter entries should be terminated by pressing the
enter key. Advanced users may desire to enter the parameters after
the command name on the same line. If all of the parameters are
entered on the same line as the command name, pressing the enter key
will cause the editor to immediately execute the command. If all of the
parameters were not entered on the command line, the editor ~ill prompt
for the remaining unspecified inputs. The rule for entering
command parameters on the command line is that any string parameter
such as a file name must be enclosed or delimited by double quotes.
An example would be "file name"

COMMAND EXPLANATIONS

The sixteen additional commands available in the command mode are
explained below. Where parameters are required, the command line form
is included.

APPEND numberoflines

The append command reads text from the original file and appends it
to the end of the text buffer. After the append e xec utes, a message
will appear at the bottom of the display with the total number of
bytes available for additional text. If the memory becomes exhausted,
then text must be written to the work file by the WRITE command.

WRITE numberoflines

A WRITE command will write to the work file the specified number of
lines starting from the first line of the text buffer. As the write
occurs, buffer space will be released. Once the specific lines have
been written to the workfile, they may no longer be edited during the
current session. They are permanently saved in the workfile.

HELP topic

The help command will display help messages to the screen
concerning the specified topic if help information is available.
Supplied help topics include: HELP - General help information. CMD -
Command mode information. KEY - Key definitions and compose mode
information. If the subject is left blank, general help will be
displayed. The help information may be viewed by using the same
movement commands used in the showfile command. To exit, hit clear
followed by •c•.

- 8 -

SHOWFILE •filename•
The showfile command will open the desired file and display a

portion of it. Several special commands may be issued while in the
showfile command. They are:

=-==----=----~=s==-=--------::a---==--------2------------ --
1
1 Clear/t Scroll the display up

one page in the file.
Clear/~

linenumber

+ linenumber
- linenumber

Clear/C

Scroll the display down
one page in the file.

Scroll the display up
one line in the file
Scroll the display down
one line in the file !

Position absolutely to 1
line number in file. !

Scroll specified number
of lines relative to curre nt
c~rsor line.+ rolls to the
end of buffer, - rolls to the
beginning of buffer.

Return to editing
2-~=----==----==---===---------------=------------·--=------

SHOWLINE linenumber
The showline command is convenient for positioning absolutely to any

line number in the buffer. Showline 1 is a quick way for positioning to
the beginning of buffer, and Showline 9999 for positioning to the end
of buffer.

INSFILE •filename" startline numberoflines
This command will insert a portion of any pre-existing file into

the text buffer starting at the cursor location. Startline is the
position in the file to be inserted where the insertion starts
from. Numberoflines is the number of lines to insert. If the
number of lines is greater than the last line in the file, then
the insertion process stops at the last line. If the number of
lines is greater than available memory in the buffer, then only
the number of lines that will fit into memory will be inserted.

FIND •string•
The find command will search forward in the text buffer, (starting

at the cursor position) for the specified string. If the string is
found, cursor will be positioned at the first occurrence, at the
beginning of the string. If the string is delimited by quotes, then
leading or trailing blanks will be included in the search string.

REPLACE •old string• "new string•
Replace will search forward in the text buffer for the old string.

(starting at the cursor position) If the old string is found, then the
first occurrence will be replaced with the newstring, and the cursor
repositioned at the beginning of the new string.

QUOTE "string"
The quote command is use<l when it is desired to insert some

non-printable character into a file. It is also useful for inserting
certain printable characte rs that are not on t he TRS-80 keyboard into

- 9 -

the file. The quoted string is inserted at the current cursor
position. Non-printable characters may be represented by at followed
by the two character hexadecimal number. (ASCII representation) For
example, tSB is the left bracket. Non printable characters such as
formfeed (I0C) will not be displayed by the editor. However, the
find command may be used to locate such characters in the buffer.

+ numberoflines
- numberoflines

The plus and minus commands are used to position the cursor a
specified number of lines relative to the cursor line.
(The blank after the+ or - is required)

ROLL numberoflines
Roll will set the page size for all scrolling commands. It is set

to 13 lines by default upon editor invocation.

HSCROLL column
The hscroll command will scroll the display horizontally to the

left or right. This feature allows editing of files wider than the
TRS-80 screen. Once a horizontal scroll is performed, the display will
remain in this mode until repositioned by another horizontal scroll
command. The column parameter is the new column position for the
left edge of the screen. Max column for TRS-80s is 16.

TABS integer
TABS = integer,integer,integer

TABS integer will set a tab stop every integer positions. All tabs
may be cleared by setting integer to 0. The editor defaults to a tab
stop every third character position. An alternate form of the command
exists. Tabs may be defined as: TAB= integer,integer,integer at
the specified columns.

QUIT "answer yes/no"
Will abort an edit session. All changes to the original file are

lost, and the original file is preserved.

EXIT "filename"
The exit command is used to successfully end an edit session. The

exit command will write out the entire text buffer to the workfile.
Any non-appended lines from the original file will also be written to
the workfile. Once consistency checks have been made, file renaming
or deletions will occur. If a filename was specified when entering
the editor, you can respond with the enter key to the filename prompt .
This will replace the old file· that was edited. You can also specify
the name of a new file. If the filename was left out when bidding the
editor, a filename must be specified in the exit command.

IO ERROR DETECTION AND RECOVERY
When an error has been dete cted during diskette IO operations,

the message: IO ERROR followed by the operating system error
code will be displayed. You may type "Q" to allow the error to pass
or any other key to cause a retry.

- 10 -

-- Blaise text editing manual --

EDITOR CONTROL KEYS

KEY alternate

t CTL/U
w CTL/J
~ CTL/H
~ CTL/R

CLEAR t CTL/B
CLEAR ii CTL/A
CLEAR ~
CLEAR •
SHFT • CTL/P
SHFT ~ CTL/N
SHFT @ CTL/0
ENTER CTL/M
CLEAR A
CLEAR B CTL/T
CLEAR C
CLEAR D CTL/D
CLEAR F CTL/C
CLEAR G
CLEAR H CTL/L
CLEAR I CTL/Q
CLEAR K CTL/K
CLEAR 0
CLEAR R CTL/Z
CLEAR s CTL/W
CLEAR T
CLEAR y
CLEAR ?

COMMAND MODE

APPEND
EXIT
FIND
HELP
HSCROLL
I NSF ILE
QUIT
QUOTE
REPLACE
ROLL
SHOWFILE
SHOWLINE
TABS
WRITE
+

FUNCTION

Cursor up
Cursor down
Cursor left
Cursor right
Roll backward
Roll forward
Cursor to BOLN
Cursor to EOLN
Delete character
Delete line
Insert line
New line
Toggle auto indent
Back tab
Command mode
Duplicate line
Find next string
Merge two lines
Horne
Insert char mode
Delete to EOLN
Open line at cursor
Replace next string
Set tab
Tab
Clear tab
Display memory

Add text to buffer
Exit and save file
Find string
Display help
Horizontal scroll
Insert file
Abort changes
Insert literal string
Replace string
Set roll
Display a file
Position to line
Set tabs
Write text to file
Move forward by lines
Move backward by lines

- 11 -

-- Blaise text editing manual --

Name
:L
:C
:D

Dec-
imal

0
1
2
3
4
5
6
7
8
9

10

DEVICE NAMES

Device
Line printer
Screen
DUMY

ASCII Character Set

Hex Name Dec- Hex Name
imal

00 NUL 11 OB VT
01 SOH 12 oc FF
02 STX 13 OD CR
03 ETX 14 OE so
04 EOT 15 OF SI
05 ENQ 16 10 OLE
06 ACK 17 11 DC!
07 BEL 18 12 DC2
08 BS 19 13 DC3
09 HT 20 14 DC4
0A LF 21 15 NAK

- 12 -

Dec- Hex Name Dec- Hex Name
imal imal

22 16 SYN 75 4B K
23 17 ETB 76 4C L
24 18 CAN 77 40 M
25 19 EM 78 4E N
26 lA SUB 79 4F 0
27 1B ESC 80 50 p
28 lC FS 81 51 Q
29 10 GS 82 52 R
30 lE RS 83 53 s
31 lF us 84 54 T
32 20 n n 85 55 u
33 21 86 56 V
34 22 n 87 57 w
35 23 t 88 58 X
36 24 $ 89 59 y

37 25 % 90 5A z
38 26 & 91 5B {
39 27 92 SC \
40 28 (93 50]
41 29) 94 5E
42 2A * 95 5F
43 2B + 96 60 7"

44 2C 97 61 a
45 2D 98 62 b
46 2E . 99 63 C

47 2F I 100 64 d
48 30 0 101 65 e
49 31 1 102 66 f
50 32 2 103 67 g
51 33 3 104 68 h
52 34 4 105 69 i
53 35 5 106 6A j
54 36 6 107 6B k
55 37 7 108 6C 1
56 38 8 109 6D m
57 39 9 110 6E n
58 3A . 111 6F 0 .
59 3B ; 112 70 p
60 3C < 113 71 q
61 30 = 114 72 r
62 3E > 115 73 s
63 3F ? 116 74 t
64 40 @ 117 75 u
65 41 A 118 76 V

66 42 B 119 77 w
67 43 C 120 78 X

68 44 D 121 79 y
69 45 E 122 7A z
70 46 F 123 78 {
71 47 G 124 7C I
72 48 H 125 7D }

73 49 I 126 7E
74 4A J 127 7F DEL

- 13 -

System Implementation

SYSTEM IMPLEMENTATION MANUAL

TABLE OF CONTENTS

. Introduction •••••••••••••••
System Overview Diagram • •

System Description.
Compiler •••
Optimizer •••••
Codegen ••••••••••••••••••
Run •••••••••••••••
Linkload••.•.
Overlayed Compiler ••••

....................
Using TRS-80 Pascal ••••••• • •••••••••••••••••

Compiling the program •••••••
Pascal command ••••••

.
The
The
The

command ••••••• Run
compiler listing ••

.

1
2

3
3
3
3
3
4
4

s
s
6
7
8

Using the LINKLOAD utility •
Loading programs •••••

• • • • • • 9
. 10

.
The SYMBOLS command. • ••• 10
Running programs •••••
Building command files ••••••

• • • • • • • . • • . . • . 11
. .. •• • • .•.•...•.......... . 11

The INIT command ••••••••••••••• 12
The TRSOOS command •••• 12
Error messages ••••• 12

Estimating Stack Size •••••••••••••••••
Pascal Memory Useage ••

.•..... . 13
. 14

Compiler Memory Constraints •.• • ••••••• .15
Real Numbers •••••••••••••••• • • . . • l 5
Procedure and Function Library.
Dynamic String Function Library ••
Random Access Files ••••••••••••••

. • 16
• • • • • • • . • • • • • • • • • ••.• • • 2 3

• ••••••••• ••• •••••••••• 2 5
Miscellaneous Differences between Alcor Pascal Vl.2A and

TRS-80 Pascal V2.0 29
Miscellaneous patches to alter the TRS-80 Pascal system •• 33

INTRODUCTION

This manual describes the specific characteristics of TRS-80
Pascal as implemented on the TRS-80 Models I and III microcomputers.
The implementation of TRS-80 Pascal on the two different models is the
same except where noted. In every language system implementation,
there are certain language features that vary upon computer
implementation. One of the advantages of Pascal is that these
variations are minor, and if a programmer minimizes the use of
non-standard language extensions, source programs may be written that
have a high degree of portability. Other machine dependent
characteristics are such items as how to invoke the compiler and
support utilities. ·

The process of building an executable Pascal program may be
summarized by the diagram on the following page.

1

System overview diagram

=-:=============-

Source file
================

V
===-----=:-=--------

Compiler program
=z===========-======

V
= • =z====2============

Translated object
file

=--=================-
V

=============z::• ====================

Advanced Development Package

(1) Optimizer
(2) Native code generator

=====================================
V

==·=================
RUN or LINKLOAD
Loader program

===================
V

===========================
User program executing
in computer memory

===================• 2:=====

V

========:==================
Input/Output files for

user program
==============-==============

- 2 -

System Description

PASCAL Compiler

The TRS-80 Pascal compiler is simply a program that is written in
Pascal and that executes on the host computer. Its purpose is to
translate Pascal source programs into an intermediate language
called P-CODE. The p-code is a low level language designed
specifically as a target language for the Pascal compiler and
resembles the assembly language for a stack oriented computer. Once a
program has been compiled, the object p-code program is stored in an
intermediate file. The intermediate file may be loaded and executed
by the host computer or run through the advanced development package.

Advanced Development Package
OPTIMIZE program

After the source program has been translated into object code, it
may be processed by the OPTIMIZER. The purpose of the optimizer is to
remove statement redundancy in the translated object code. This will
effectively reduce the final size of the program by approximately
10-30 percent. The optimizer should be used when program size is
important. The optimized p-code is an exceptionally compact
representation of the Pascal program. This is evidenced by the fact
that the Pascal compiler itself Can 8500 line Pascal program), can be
run on a 48K machine without resorting to overlays.

CODEGEN program

If program execution speed is important, the native code
generator {codegen) program may be used to process the object program
file. Codegen will generate native Z-80 code which may be directly
executed by the processor. Execution speed is usually increased by a
factor of 3 - 5 times. One of the drawbacks of code generation is
that the resultant program will grow in object code size by a factor
of 2 - 3 times over the p-code version . For large Pascal programs, {such
as the compiler itself) the resultant program image may not fit into
available memory. For small programs this may not be a factor. To
combine the best of both worlds the codegen program will
allow selective code generation of specific modules in a program.
This allows the critical paths of a program to be translated into
native Z-80 instructions, while at the same time reducing the overall
program size by utilizing p-code for the rest of the program. If
program size is not a factor, full code-generation may be performed.

RUN Program

After the Pascal source program has been compiled, and/ or
processed by the advanced development package, it may be executed
by the RUN program. This utility will directly execute the compiled
object code without the use of the LINKLOAD program.

- 3 -

System Description

LINKLOAD program

After the compiler has translated the source code into p-code,
the p-code file may be loaded into memory and executed. The
program that performs this is the LINKLOAD utility. Its purpose
is to load any number of object modules into memory. This
allows separate compilation of procedures and functions. To
perform separate compilation of a procedure or function, the
compiler NULLBODY option must be used. For more information,
see the TRS-80 Pascal Language Reference Manual. This linking
loader includes an interpreter in the final load module that
executes the p-code instructions when the program is run. The
linking loader also has the capability of storing the memory
image of the program as an executable command file. Once an
image has been saved, the program can be executed simply by
typing the file name at the TRSDOS command level. The linking
loader and interpreter is a 9000 line program written in Z-80
assembly language.

PASCALB
Overlayed Pascal compiler>

The size of a Pascal program that may be compiled is dependent
on the number of symbols used in the source program and not
necessarily the number of lines in the program. The
non-overlayed compiler should be able to compile a typical 1000
line program with all of its associated symbols. A further
improvement can sometimes be made by separately compiling
procedures or functions. If the program is too large for the
non-overlayed compiler, the overlayed compiler may be used. The
overlayed compiler has been segmented such that parts of it
reside on ·the disk during execution, and are read into memory
only as needed. The overlayed compiler will execute more slowly
than the non-overlayed version, but generates identical object
code. The overlayed compiler has enough space to compile a
typical 4000 line Pascal program with all of its associated
symbols.

- 4 -

Using TRS-80 Pascal

The first step in developing a computer program is to define the
problem and develop algorithms for the solution. Once the algorithms
are specified, the next task is to translate them into a programming
language. Pascal is a particularly good expression language for a
large number of problems.

Once the program has been designed, the next step is to enter the
program into the computer. This is normally accomplished with the aid
of a text editor. A screen oriented text editor is supplied with the
compiler. For details on how to use this editor, refer to the Editor
manual. Once the program has been entered and saved, the next two steps
are to compile and execute.

This section describes the procedures for performing the last
two steps on the TRS-80. If you are not familiar with the Pascal
language, refer to the TRS-80 Pascal Tutorial Manual for
information on the language. For those familiar with Pascal, the
Pascal Language Reference Manual contains compact detailed information
on the features of TRS-80 Pascal.

Compiling the program

Once the program has been entered into the computer and placed in
a disk file, the next step is to compile it. The Pascal compiler
translates the source program into a form that the computer can
execute. For example, suppose that you have developed a program to
prepare your income tax return. This source program may be stored in a
file called: TAXES/PCL. The simplest method to execute this program
is to type at TRSOOS Ready:

PASCAL TAXES <enter>
and

RUN TAXES <enter>

to compile TAXES/PCL, creating TAXES/OBJ

to execute TAXES/OBJ

Note: The PASCAL command appends the extension /PCL to the
filename. The RUN command appends the extension /OBJ to the
filename if no extension is specified.

This will compile and execute your program. Let's examine the process
in more detail. The first command line causes the operating system to
load and execute the Pascal compiler. The compiler then translates
the Pascal source code contained in the file: TAXES/PCL into code that
can be run on the computer. This code is stored in a file called:
TAXES/OBJ. A listing will be sent to the CRT. The listing shows the
source program and will contain error messages for any errors
detected. (The listing will be described in more detail in a later
section.) If errors are detected, error code numbers and error messages
will be contained in the listing. The errors in the source program must
be corrected before the program can be executed.

Once the program has been compiled without errors, it can be
executed with the •RUN• command. •RUN TAXES• causes the object code
stored in the file •TAXES/OBJ• to be loaded into memory and executed.

- 5 -

Using TRS-80 Pascal on the TRS-80

The first thing that a Pascal program normally does is to open
the files "INPUT" and "OUTPUT". When this happens, the prompts:

INPUT =
OUTPUT =

will appear on the screen. At this time you may enter the file or
device to be used when the program reads from input or writes to
output. If you simply press the enter key, then input and output
will be directed to the screen. When any file is opened by a Pascal
program (by calls to RESET or REWRITE), a prompt will appear on the
screen. To the left of the equal sign will be the name of the file
being opened. You should type the name of the disk file or device
to be associated with that file. Note- The INPUT,OUTPUT prompts
may be eliminated by the use of the (*$NO INOUT*) option. See the
Pascal Language Reference Manual for compiler options.

The runtime mapping of Pascal files to physical files and devices
allows a program to redirect its input and output without any changes
to the source program and without recompiling the program. For
example, you could test the taxes program with the output going to the
screen. When you are satisfied with the results, the output can be
directed to a file or line printer instead.

The file names that you type to direct Pascal input and output
are in the same format as normal TRSDOS file names. The disk drive
specification is optional as in TRSDOS. There is one extension.
Input and output to any Pascal file can be sent to physical devices as
well as to a file. The device names are simple extensions to the disk
names used by TRSDOS. For example, the name of the line printer is
':L', and the name of the CRT is ':C'. There is also a dummy device.
If a file is associated with ':D', then no actual output occurs. This
is useful if you wish to run the program and discard some of its
output.

THE PASCAL COMMAND

The PASCAL command causes the Pascal compiler to be loaded and
executed. This command has two forms. The simplest form is:

PASCAL <stack> filename <enter>

where file name is the name of a file containing a Pascal program.
The <stack> is an optional parameter that sets an upper limit on
memory space that the compiler may use for stack. The
default size of 4096 bytes should be suitable for most applications.
After a compile is finished, the aroount of stack used is displayed
on the screen. If the compile terminates due to OUT OF STACK, you
should specify more stack. The angle brackets<> are required if
the stack is specified.

In the short form, the extension for the source file is assumed to
be /PCL and the object code is sent to a file of the same name but
with the extension /OBJ. Any extension typed in the command line
will be ignored. A disk drive number may be specified.

- 6 -

Using TRS-80 Pascal

For example, PASCAL TAXES:! <enter>
will cause the program •TAXES/PCL:1• to be compiled and the object to
be stored on disk drive one. In this case the same disk drive will be
used for both source and object. If the disk drive is omitted, TRSDOS
will search all the drives for the first occurrence of TAXES/PCL and
will store the object on the lowest numbered drive that is not write
protected. In the short form, the listing will always be displayed on
the CRT screen.

The long form of the Pascal command uses simply: PASCAL <enter> to
invoke the compiler. In this case, the file names for the source,
object and listing will be prompted for on the screen. You should
type the name of the actual files to be used. Normal TRSDOS syntax
applies. In this case the file names are used as specified. The
source and object can be on different disk drives and the listing
can be placed in a file, sent to the screen or sent to the line
printer. For example, the following sequence will cause the file:
•TAXES/TMP• to be compiled with the object code stored in
•TAXES/OBJ• on disk drive 2 and the listing will be sent to the line
printer.

PASCAL <stack>
SOURCE - TAXES/TMP
LISTING 2 :L
OBJECT = TAXES/OBJ:2

THE RUN COMMAND

The RUN command is used to load and execute a previously compiled
Pascal program. The object code will be loaded and the program
executed. The RUN command contains the object code for the TRS-80
support routines (such as SETPOINT, CLEARSCREEN, etc). Any of these
routines can be called. If any other external procedures are
required, the linking loader must be used to link these external
procedures to the program. The run command is invoked as:

RUN program

Pascal programs use a stack to store local variables and to save
return addresses for procedure and function calls. This stack is
allocated when the program is run and the required size is determined
by the number and type of variables declared and the number of and
sequence of procedure calls. Methods of estimating the amount of
stack required for a program are included in a later section of this
manual (see Estimating Stack Size).

- 7 -

Using TRS-80 Pascal

The RUN command allows the amount of stack space to be specified
on the command line. In the RUN command, the size of the stack is
selected by following the program name with the stack size, separated
with a blank or a comma. For example, the following line would cause
the program DATABASE to execute with lSK (15360 bytes) of stack space.
(No angle brackets around lSK are required with RUN command.)

RUN DATABASE lSK

The stack size can be specified as a decimal or hexadecimal number.
Hexadecimal numbers have a 't' as the first character. This is the
same notation as is used in the Pascal language. The letter 'K'
represents 1024, so 8K is equivalent to 8*1024 or 8192. If no stack
size is specified, then one half of the unused memory space is
allocated for the stack, and the other half is allocated to the
heap. The heap is the area of memory used by the Pascal program for
dynamic memory storage as required by the procedures NEW and
DISPOSE.

When execution of the program completes, the amount of stack and
heap used is displayed on the screen. These numbers reflect the
actual quantity of memory used during execution.

THE PASCAL COMPILER LISTING

The Pascal compiler reads the source program from a file and
produces two outputs. One of these is a file containing the object
code. This code is loaded when the program is executed. The other
output of the compiler is the listing. The listing contains the text
of the source program with some additional information.

The listing is divided into pages. At the top of each page is a
heading. The heading contains the version number of the compiler,
and the page number. Each page after the first contains a form feed
(control/Lor t0C) character. The form feed will cause a page eject
on most printers. The number of lines per page may be changed by
a compiler option in the source program. (See the Language Reference
Manual)

Each line of the listing is numbered beginning with line 1. The
compiler may also generate hexadecimal addresses for each line of
the listing. The compiler widelist option causes this extra
information to be generated. The addresses represent the locations
of the generated object code, relative to the start of the program.
If the program contains procedures or functions, the addresses for
these routines are relative to the start of the routine.

- 8 -

Using TRS-80 Pascal

If errors are detected by the Pascal compiler, error messages
will appear in the listing. Error message lines have a string of five
asterisks('*****') at the beginning of the line. An up arrow will
appear pointing at the approximate location within the line where the
error was detected. This will be followed by one or more error codes.
It is possible for a single error to generate more than one error
code. For example, a procedure argument which is an undefined
variable also does not match the type of the parameter. In most cases
the first error code identifies the cause of the error.

If any errors were detected, a summary of the meanings of the
error codes that were generated is printed at the end of the listing.

USING THE TRS-80 LINKLOAD UTILITY

This section describes the use of the Pascal linking loader. The
linking loader provides powerful facilities for configuring Pascal
programs. Separately compiled programs and procedures may be linked
together and executed. Programs may be linked and stored as command
files on disk and then later invoked from TRSDOS as commands. These
command files behave in the same way as the utilities supplied with
the operating system. This section assumes that the reader is
familiar with the TRS-80 Pascal Language Reference manual and has
some experience with Pascal on the TRS-80.

Invoking the Linking Loader:

The loader is executed by typing "LINKLOAD" at the TRSOOS command
level . At this point the linking loader is brought into memory from
disk. The first item displayed is a menu of commands followed by the
command prompt:

LzLOAD, R=RUN, T=TRSOOS, I=INIT, S=SYMBOLS, B=BUILD CMD
>>

Each of these commands is described in the following 3 pages. All
commands require only the single letter, although longer names will
also be accepted. A command is terminated with the ENTER key. To
execute a command, simply type its first letter followed by ENTER.
If more information is required, additional prompts will be
supplied. The list of commands can be displayed by typing "B" or
"?".

- 9 -

Using TRS-80 Pascal

Loading Programs:

The load command is used to load programs, procedures and
functions into memory . To load a program, type "L" and press the
"ENTER" key. The load command will ask for a file name. Type the
name of the file in standard TRSDOS notation. The file should contain
object code as generated from the Pascal compiler. The object file
will be opened, and the object code will be loaded into memory. Each
time a program, procedure or function is loaded, its name will be
displayed on the screen. This will allow you to monitor the load
process, and shows the identity of the procedures being loaded.

The object code for each Pascal procedure is compiled into a
separate entity. These are then linked together when they are loaded.
This allows procedures to be compiled separately and then joined.
Thus, a program may be compiled a piece at a time, and when changes
are made, only the parts affected by the change need to be recompiled.
This also allows the creation of libraries of utilities. These
utilities can be loaded with any program that needs them, but they
need be compiled only once.

Symbols:

The linking loader records the name and address of each procedure
in a table as it is loaded. Also in this table are the names of
procedures that have been called <referenced) by another procedure,
but have not yet been loaded into memory. This symbol table can be
displayed to the screen with the •s• command.

The symbols command displays all currently defined or referenced
symbols on the screen. One procedure name is displayed per line.
After the procedure name is a character that describes the use of that
procedure. A •o• indicates that the name is defined: that is, the
procedure has been loaded into memory. An "R" indicates that the
procedure has been referenced but not yet defined. This means that a
procedure that has already been loaded makes a call to this procedure.
All procedures that are called must be loaded before the program can
run. A •c• indicates that the symbol is the name of a common block.
Commons are used to provide statically allocated shared data. See the
TRS-80 Pascal reference manual for an explanation of the use of
commons.

The last item
symbol is defined
procedure begins.
is the address of

on the line is the address of the symbol. If the
<•o•> then this is the address in memory where the
If the symbol has not been defined <"R"> then this

the last place it was used (called).

- 10 -

Using TRS-80 Pascal

Running Programs:

After a program has been loaded, it can be executed with the Run
command.

The prompt from the Run command asks for the amount of
stack space required by the program. As in the RUN program, one-half
of the unused memory is allocated to stack, and the other half to the
heap by default. If these space allocations are sufficient, then
simply press the enter key. Otherwise enter a value. The size of the
stack may be expressed in decimal, hexadecimal (precede the number
with "I">, or in kilobytes. 8k means 8 times 1024, or 8192
bytes. Methods of estimating the required stack size are included in
a later section of this manual.

The program will execute after the prompt is answered. If
files are used by the program, the names of the files to be used will
be determined from the keyboard. When a file is opened with RESET or
REWRITE, the pascal file name will be displayed on the screen and you
will be requested to type the name of the actual file to be used. The
names are in standard TRSDOS notation. If you wish to use an Input or
Output device instead of a file, this can be specified in a manner
analogous to disk names. A device is designated by a colon followed
by a letter indicating the device. For example :Lis the line printer
and :C is the crt and keyboard. (Prompts for filenames may be
eliminated by the use of the external procedure SETACNM. Files or
device names may be built in to the program with SETACNM. See the
section on external procedures and functions in TRSLIB.)

Building command files:

Once a program has been loaded, it may be saved on disk as a
command file. This is done by the build (B) command. The first
prompt from this command is the same as for the run command and has
the same meaning. The build command then asks for a file name. This
is the name of the file that will contain the generated command. The
program will be saved on disk in TRSDOS loader format and may be run
at a later time by typing its name to TRSDOS. The build command then
returns control to TRSDOS. The program may be run by typing its name
to TRSDOS.

- 11 -

Using TRS-80 Pascal

Init:

The init command clears the symbol table and redisplays the
command menu. This command may be used if the wrong program is loaded
by mistake. It is equivalent to exiting to TRSDOS and then running
LINKLOAD again.

TRSDOS:

The T command returns to the TRSDOS operating system.

ERROR MESSAGES

The following error messages are generated by the linking loader:

*** CANNOT OPEN FILE

This message is generated when you attempt to load and the loader
is unable to find a file by the name specified. This may be caused by
a misspelling, or the wrong disk being in the drive.

*** UNRESOLVED REFERENCES

When you use the run command to execute a program, or the build
command to generate an image on disk, the loader checks that all of
the procedures that are called within the program have been loaded.
If there are procedures or functions that have been called but have
not been loaded, then this message is generated. At this point, you
can load the required modules and repeat the command. The symbols
command can be used to list names of the procedures that are not yet
defined. These will have an "R" in the listing.

*** INVALID OBJECT TAG

This message is issued when a load is performed on a file that is
not in a valid object format. The most frequent cause of this error
is an attempt to load the source program instead of the ~bject.

*** SYMBOL TABLE FULL

The linking loader has room for 256 different external symbols.
If more procedures than this are loaded, the symbol table will become
full.

*** ILLEGAL REFERENCE

This message signifies an inconsistent structure in an object
file. It is an indication that the file has been damaged. The best
solution is to recompile the offending program.

- 12 -

ESTIMATING STACK SIZE

Pascal programs use a stack to store local variables and to save
return addresses for procedure and function calls. This stack is
allocated when the program is run and the required size is determined
by the number and type of variables declared and the number of and
sequence of procedure calls. The stack is a dynamic structure. Space
is allocated when a procedure is called and released when the
procedure is exited.

The total stack size required by a program is determined from its
dynamic behavior at run time. Each time a procedure is called, space
is allocated for its local variables. The total stack in use is a
function of the number of procedures active at the time and the number
and sizes of variables used within those procedures. If two
procedures are never active at the same time, then the space used by
each can be shared. The total stack that must be allocated is
determined from the maximum size that is in use at any given time.

The simplest method of determining stack requirements is to run
the program. Specify enough stack for it to run, perhaps with an
excess. When the program terminates, the maximum stack used by the
program is printed on the CRT. A good rule of thumb is to allocate
20% more stack than is required for a typical execution of the
program.

The size of stack required can also be determined from the source
program. It is necessary to determine which procedures will be active
at a given time. Then add the size of the local variables for each
procedure. If too much or too little stack is allocated for the
program, it may terminate unpredictably.

The sizes of simple variables are summarized below:

type size in bytes

CHAR 1
BOOLEAN 1
INTEGER 2
STRING 2
REAL 4
REAL (double precision) 8
FILE 32
TEXT 32

- 13 -

Using TRS-80 Pascal

The size of an array is determined by multiplying the size of the
array (upper bound-lower bound+!) by the size of an element. The size
of a record is determined by adding the sizes of its individual
fields. Packing is on byte boundaries.

The size of a set is one plus the ordinal of its largest possible
member divided by 8. Enumerated types require one byte, and subranges
require two bytes. (0 •• 255 requires one byte).

To calculate the total stack size required, you should also
include 64 bytes for the predeclared files INPUT and OUTPUT. Active
procedures require space for their parameters as well as their local
variables. Parameters passed by value require storage based on the
size of the variable; parameters passed by reference require two bytes
each. Each active procedure also requires 9 bytes to store dynamic
return information.

PASCAL MEMORY USAGE

The Pascal linking loader or RUN program is loaded by TRSDOS at
15200 in memory. The Pascal program that is being executed will be
loaded immediately above the loader. The next segment above the
program is used to contain the Pascal stack. The stack is used by
Pascal to contain the local variables declared in the VAR section of
each program, procedure or function. It also contains return
addresses and linkage information.

The remainder of available memory is used for the heap.
is a section of memory that is used for allocating dynamic
Programs that use pointers and the procedure NEW, will use
from the heap. The heap also contains the buffers used to
and write to files.

The heap
storage.
storage
read from

The total amount of memory available to Pascal is determined from
a TRSDOS system constant. On the TRS-80 model I, the location of the
top of memory is stored at 14049 in system RAM. On the model III, the
location is 14411. If other programs are to reside in memory along
with Pascal, they should be loaded at the top of memory. The top of
memory address should be changed to prevent Pascal from using the
reserved locations.

- 14 -

Using TRS-80 Pascal
COMPILER MEMORY CONSTRAINTS

The TRS-80 Pascal compiler requires approximately 33k of memory
for code. Of this total, 27k is the compiler itself and the remainder
is runtime support. The runtime support portion contains the drivers
for input and output devices, an interface to the file system and the
Pcode interpreter. TRSDOS occupies 4.5k of memory, which leaves 10.5k
bytes of memory for data. 4.0k of this total is used for stack space
by the compiler, with the result that the heap is approximately 6k
bytes. This is enough space for about 250 symbols to be defined. A
program that uses more than 250 symbols at a time will run out of heap
space during the compile.

There are some ways of saving memory during the compile so that
larger programs can be compiled. The limit on symbols is relative to
the number of symbols visible at any point within the program.
Symbols that are not available to the program are not retained by the
compiler. The use of symbol table space can be improved by defining
fewer global variables at the outer levels and making use of locals
whenever possible. This is also good programming practice.

The length of symbol names is not relevant in Pascal, unlike
BASIC. Use of long names has no effect on program size or compiler
memory usage. Extensive use of string constants will cause the
compiler to use more memory. If a string constant is used in more
than one place in the program, it will take less space if it is
declared as a constant.

PASCALB is the overlayed or segmented version of the compiler.
This version dynamically loads portions of the Pascal compiler from
disk as needed. This increases the amount of memory available for
symbols and allows larger programs to be compiled. The overlayed
compiler will compile programs that are four times the size that can
be compiled with the non-overlayed compiler. I.E.; a typical 4000
line program will compile successfully. It also has the drawback that
the compiler runs more slowly.

REAL NUMBERS

Real numbers are either single precision or double precision.
The TRS-80 rom routines are used for all floating point calculations,
and the precision and accuracy of calculations are the same as for
Basic programs. Whether real numbers in TRS-80 Pascal are considered
to be single or double precision by the compiler is set by a compiler
switch setting at compile time. See the TRS-80 Pascal Reference
manual, •compiler options•.

Accuracy
6 digits

Accuracy
16 digits

Single precision
Range

(-)l.7E-38 .. (-)l.7E+38
Double precision

Range
(-)l.7E-38 .. (-)l.7E+38

Note: All functions are performed in single precision. Arithmetic
expressions that cause a real number overflow will cause programs
to not return during calculations. This is due to the fact that
the ROM routines do not return to Pascal if an error is detected.

- 15 -

TRS-80 Procedure and Function Library

A set of functions and procedures to access the hardware features
of the TRS-80 is provided with the Pascal compiler.
These procedures can be declared as external procedures within Pascal
programs. The object code for these procedures and functions is
provided in two forms.

If the program is executed with the RUN command, the function
library is contained within the RUN program. Any of the library
procedures and functions can be called and the routine will be linked
to when the program is loaded. If the linking loader is used, these
routines are not automatically available. This allows programs that
do not need these routines to have more space available. The function
library is provided in object form on disk. This file can be loaded
with the load command from the linking loader. This will make all of
the library routines available.

Each of the library routines is described below. A Pascal
external declaration is given. This declaration should be included in
any program that uses the routine.

The external declarations of the library routines are included in
the file TRSLIB/PCL. Any or all of these declarations can be
inserted into the source program using the insert file command in the
text editor.

PROCEDURE CLEARGRAPHICS; EXTERNAL;
The purpose of this procedure is to clear the display when

utilizing the graphics routines. Its function is similar to the
clearscreen function but loads all hex 80's into the display memory,
instead of hex 20's as CLEARSCREEN does.

PROCEDURE SETPOINT(X, Y: INTEGER); EXTERNAL;
This procedure sets a graphics point on the screen. The location

of the point is specified with the x (horizontal) and y (vertical)
coordinates. The value of x should be in the range: 0 <= x <= 127 The
value of y should be in the range: 0 <= y <= 47

PROCEDURE RSETPOINT(X, Y: INTEGER); EXTERNAL;
This procedure clears a graphics point on the screen. The

location of the point is specified with the x (horizontal) and y
(vertical) coordinates. The va~ue of x should be in the range: 0 <= x
<= 127 The value of y should be in the range: 0 <= y <= 47

FUNCTION TESTPOINT(X,Y:INTEGER) : BOOLEAN; EXTERNAL;
This function tests the state of a point on the screen in

graphics mode. X and Y are the horizontal and vertical coordinates of
the point to be tested. The function returns TRUE if the point is on
(white), and FALSE if the point is off.

- 16 -

TRS-80 Procedure and Function Library

TYPE BYTE= 0 .. 255;

FUNCTION PEEK(ADDRESS: INTEGER) : BYTE; EXTERNAL;
This function returns the contents of any memory location. It

may be used to examine memory or memory mapped input devices. ADDRESS
is the address being examined. An address may be passed if its value
is known. The addresses of pascal variables may be obtained by
calling the LOCATION function. (see Reference Manual)

PROCEDURE POKE(ADDRESS: INTEGER; VALUE: BYTE); EXTERNAL;
Poke is used to alter the contents of any location in memory. It

may also be used to write to memory mapped ontput devices such as the
printer port.

PROCEDURE GOTOXY(X, Y : INTEGER); EXTERNAL;
This procedure positions the cursor on the CRT to the specified

location. If a write is performed to a file connected to the screen
then the text will appear beginning at the addressed location. The
procedures WRITECH and WRITESTRING (see below) also use this location.
The value of x should be in the range: 0 <= x <= 63 The value of y
should be in the range: 0 <= y <= 15 If GOTOXY is used in-conjunction
with Pascal READ or WRITE statements, then a call to the external
procedure NOBLANK at the beginning of the program is necessary. The
TRS-80 ROM driver for the screen will automatically clear the next line
on the display when the carriage return character is received. The
can be detrimental when constructing menu displays. A call to NOBLANK
will cause the next line to always be re-displayed.

PROCEDURE NOBLANK(REDISPLAY: BOOLEAN); EXTERNAL;
The TRS-80 ROM routine driver for the screen will automatically

clear the next line on the display when a CR character is received. A
call to NOBLANK with REDISPLAY:= TRUE will cause the next line to
always be preserved if REDISPLAY:~ false, it will be blanked.
The Pascal logical files used for screen display must be RESET after
the NOBLANK call for it to take effect. This includes INPUT.

PROCEDURE READCURSOR(VAR X, Y : INTEGER); EXTERNAL;
This procedure returns the current position of the cursor on the

crt screen. Xis the horizontal position (character) and Y is the
vertical position Cline).

PROCEDURE WRITECH(CH : CHAR); EXTERNAL;
This procedure writes a single character to the CRT at the

current cursor location. The cursor location is advanced by one.

- 17 -

TRS-80 Procedure and Function Library

TYPE CHARSTRING = PACKED ARRAY[l .. xx] OF CHAR; {xx is any length}

PROCEDURE WRITESTRING(VAR S: CHARSTRING; FIRST, LAST: INTEGER);
EXTERNAL;

This procedure writes a portion of a string of characters to the
screen. The text is written starting at the current cursor location.
FIRST is the index of the first character to be written, LAST is the
index of the last character to be written . The total number of
characters displayed is: LAeT-FIRST+l. If last is less than first
then no characters are written.

PROCEDURE CLEARSCREEN; EXTERNAL;
A call to CLEARSCREEN causes the crt display to be cleared and

the display to be set to 64 character width.

PROCEDURE INKEY(VAR CH: CHAR; VAR READY: BOOLEAN); EXTERNAL;
This procedure scans the keyboard to determine if a key is being

pressed. If a key is currently pressed, then CH is the character
generated by that key and READY is set to TRUE. If no key is pressed,
then READY is FALSE and CH is the space character: ' '.

FUNCTION GETKEY: CHAR; EXTERNAL;
This function waits for and returns the next character from the

keyboard.

FUNCTION INP(PORT: BYTE) : BYTE; EXTERNAL;
This function performs input from a Z80 IO port. The port number

is passed to the function and the value read from that port is
returned as the function value.

PROCEDURE OUT(PORT, VALUE: BYTE); EXTERNAL;
This procedure performs physical output to a Z80 port.

used in conjunction with the function INP to communicate
interfaced as input or output ports. The two parameters
port number and the value to be written to that port.

- 18 -

It may be
with devices
specify the

TRS-80 Procedure and Function Library

PROCEDURE USER(ADDRESS: INTEGER; VAR DATA: INTEGER); EXTERNAL;
This procedure interfaces to assembly language routines resident

in the TRS-80's memory. ADDRESS is the physical address where the
routine is loaded. Any assembly language routines that are to be
called from Pascal should be loaded in a portion of memory that is not
used by TRSOOS or Pascal. The location of the top of memory can be
set by using the TRSOOS model I debugger to alter location 14049 in
RAM, or location 14411 on the model III. This location contains the
highest usable location in memory. Pascal will not use any memory
above this address, so assembly language routines can be loaded there.

Information is passed to the assembly language routine through
the DATA parameter. When the assembly language routine is called, the
HL register pair contains the value of DATA. When the routine exits,
the contents of the HL register pair is returned as the new value of
DATA. In cases where more than one word of information is required,
the value of DATA can be the address of a variable. The address of
any Pascal variable can be obtained by a call to the predefined
function: LOCATION. This enables the called assembly language routine
to access arrays or buffer data areas. The assembly language routine
is entered with a standard Z-80 call instruction and should be exited
via a return. All Z-80 registers are available for use in the assembly
language subroutine.

PROCEDURE CALL$(ADDRESS: INTEGER; VAR A,STATUS: BYTE;
VAR BC, DE, HL, IX, IY: INTEGER); EXTERNAL;

This procedure can be used in a similar manner to USER to call
assembly language subroutines. The difference is that CALL$ permits
you to set up all of the Z-80 registers from Pascal. The values passed
will be in the registers when the subroutine is called. When the
subroutine returns, the current contents of all registers are returned
to the Pascal program via the reference parameters. Status is the
Z-80 flag register. NOTE: THE FLAG REGISTER PARAMETER HAS BEEN
ADDED FOR TRS-80 Pascal 02.00.00.

TYPE ALPHA= PACKED ARRAY[l .. 8) OF CHAR;
PROCEDURE TIME(VAR T: ALPHA); EXTERNAL;

This procedure returns the current time of day. The time is in
the form of hh:mm:ss

TYPE ALPHA= PACKED ARRAY[l .. 8) OF CHAR;
PROCEDURE DATE(VAR T: ALPHA); EXTERNAL;

This procedure returns the current date as known to the operating
system. The date is returned as: mm/dd/yy

- 19 -

TRS-80 Procedure and Function Library

FUNCTION FILE$STATUS(VAR F: TEXT) : BYTE; EXTERNAL;
This function returns the status of a file. The file can be of

any type, but the external declaration must specify a type that
matches the type of file being tested. The byte returned is the error
code for the latest IO (input or output) error. If no errors have
occurred, then zero is returned. This function is used in conjunction
with IO$ERROR and allows a program to detect and recover from its own
IO errors.

PROCEDURE IO$ERROR(NEWSTATE: BOOLEAN;
VAR OLDSTATE: BOOLEAN); EXTERNAL;

This procedure sets the state of the IO error recovery flag
within the pascal runtime system. This flag is used to determine
whether a program detects its own IO errors. If the flag is set to
true, then default error processing is performed. In case of an error
on a file or device, a message is displayed on the CRT and the program
halts.

If the IO error flag is set to false, then all IO errors are
ignored by the system, and it is up to the program to check for and
recover from IO errors. IO errors can be detected by calling the
function FILE$STATUS.

NEWSTATE is a boolean value that sets the new state of the IO
error recovery flag. OLDSTATE is used to return the previous value of
the flag. This allows a program to change the state temporarily and
then restore it.

PROCEDURE HP$ERROR(NEWSTATE: BOOLEAN;
VAR OLDSTATE: BOOLEAN); EXTERNAL;

This procedure sets the state of the heap error recovery flag
within the pascal runtime system. When this flag is set to true, then
a call to the procedure NEW will cause the program to terminate with
an error message if no more space is available. Setting this flag to
false causes the procedure NEW to return NIL if no space is available.
The calling program should check for NIL on each call to NEW when this
flag is set to false. This allows a program to use maximum memory
from the heap without danger of an abnormal termination when space is
exhausted.

NOTE- Both NEWSTATE and OLDSTATE must be initialized before calling
IO$ERROR or HP$ERROR.

PROCEDURE $MEMORY(VAR STACK, HEAP: INTEGER); EXTERNAL;
This procedure allows a program to determine the amount of memory

currently available. The parameter STACK returns the current number
of stack bytes available and the parameter HEAP returns the amount of
heap available.

- 20 -

TRS-80 Procedure and Function Library

TYPE FILENM = PACKED ARRAY[l .. XX] OF CHAR;
ALPHA = PACKED ARRAY[l •. 8] OF CHAR;
(Where XX is any length long enough for the file name)

PROCEDURE SET$ACNM(VAR F : TEXT; VAR file name: FILENM;
NAMELENGTH: INTEGER; VAR FILEID: ALPHA); EXTERNAL;

SET$ACNM is used to set the name of the physical file or device
to be associated with a Pascal file. It allows a program to compute
file names internally. For example, a database program may know the
name of the file containing the database. This procedure allows the
program to specify the file name rather than requesting it from the
keyboard.

The parameter F can be a file of any type. The external
declaration of SET$ACNM that is included in the source program must
specify a type for F that matches the actual file type to be used.

File name is a string containing the text of the file name. This
string must be compatible with the operating system syntax for file
names. The physical devices: lineprinter (:L), crt C:C) and dummy
(:D) may also be used. NAMELENGTH is an integer that specifies the
length of the file name.

FILEID is an 8 character string that is used to identify the
Pascal name for the file, such as INPUT or OUTPUT.

If SET$ACNM is called prior to a RESET or REWRITE on a file, then
Pascal will not prompt the CRT for the file name. All subsequent
RESET or REWRITES will not cause a prompt unless a CLOSE(file name) is
performed on the file. The file name association will remain as
previously defined by SET$ACNM.

(Example program segment)

TYPE FILENAME= PACKED ARRAY [l .. lS]OF CHAR;
ALPHA = PACKED ARRAY [1 .. 8]0F CHAR;

VAR FNAME :FILENAME;
FILEID:ALPHA;
F :TEXT;

PROCEDURE SET$ACNM(VAR F:TEXT; VAR FNAME:FILENAME; LEN:INTEGER;
VAR FILEID:ALPHA); EXTERNAL;

BEGIN
(* THIS ASSIGNMENT STATEMENT REQUIRES THE NAME TO BE LEFT*)
(* JUSTIFIED, AND BLANK PADDED TO THE CORRECT ARRAY LENGTH*)
FNAME:='DATA/TXT:0 ';
FILEID:='F ';
SET$ACNM(F,FNAME,10,FILEID);
RESET(F);
READ (F , CH) ;
(* AND ETC. • *)

- 21 -

PROCEDURE SETACNM(VAR logical : filetype;
physical : STRING); EXTERNAL;

The library procedure SETACNM serves the same purpose
as SET$ACNM but is simpler to use. The procedure takes
only two parameters, the Pascal logical file variable, and
the physical file or device name to associate with it.
Filetype is any legal Pascal file type. The physical name
parameter is a dynamic string. The SETACNM procedure
disposes this string before exiting to recover the space.

If multiple file types are used in a program, the type
transfer operator(::) may be used to allow SETACNM to be
called with different file types. The external declaration
of SETACNM may specify one of the file types used. The type
transfer operator must then be used with the other file types
to avoid a type mismatch error during the compile. Each of
the other files must be type transferred to the same type as
the one used in the declaration. The following example
illustrates the use of SETACNM.

(*$NO INOUT*) {eliminate the prompt for INPUT & OUTPUT}
PROGRAM sample;

VAR printer
out

TEXT;
FILE OF INTEGER;

PROCEDURE SETACNM(VAR f : TEXT; name: STRING); EXTERNAL;

BEGIN {main body of program sample}
{map logical file "printer" to the line printer}
SETACNM(printer,BLDSTR(':L'));
{no prompt will occur when REWRITE(printer) is executed}
REWRITE(printer);
{map logical file "out" to disk file "OUT/DAT"}
SETACNM(out::TEXT,BLDSTR('OUT/DAT'));
{no prompt will occur when REWRITE(out) is executed}
REWRITE(out) ;

END. {end of program sample}

- 22 -

STRING FUNCTION LIBRARY

The following functions are provided for handling dynamic
string manipulations. (See the appendix of the Language
Reference Manual for information about dynamic strings.)

FUNCTION LEN(S: STRING) : INTEGER;
This function returns the length of a string.

FUNCTION LEFT$(S: STRING; POSITION: INTEGER) : STRING;
This function returns the left portion of the string
ending at the specified position within the string.

FUNCTION RIGHT$(S: STRING; POSITION: INTEGER) : STRING;
This function returns the right portion of the string
starting at the specified position within the string.

FUNCTION MID$(S: STRING; POSITION, LENGTH : INTEGER) : STRING;
This function returns the portion of the string starting
at the specified position and including the number of
characters specified by length.

FUNCTION STR$(LENGTH: INTEGER; CH : CHAR) : STRING;
This function returns a string of the specified length
which is filled with the specified character.

FUNCTION ENCODEI(N: INTEGER) : STRING;
This function returns a string which is the character
representation of the specified integer.

FUNCTION ENCODER(R: REAL) : STRING;
This function returns a string which is the character
representation of the specified real for single precision.

FUNCTION ENCODED(R: REAL) : STRING;
Same as ENCODER, but for double precision reals.

FUNCTION DECODEI(S : STRING) : INTEGER;
This function returns an integer number which is the binary
representation of the specified string.

FUNCTION DECODER(S: STRING) : REAL;
This function returns a real number which is the binary
representation of the specified string for single precision.

FUNCTION DECODED(S: STRING) : REAL;
Same as DECODER, but for double precision reals.

- 23 -

FUNCTION CHARACTER($: STRING; POSITION: INTEGER) : CHAR;
This function returns the character at the specified
position in the string.

TYPE COMPAREVALUE = (LESS, EQUAL, GREATER);
FUNCTION CMPSTR(Sl, S2: STRING) : COMPAREVALUE;

This function compares the two specified strings
and returns an enumerated value based on the
comparison. The returned value is LESS if Sl<S2,
EQUAL if Sl=S2, and GREATER if Sl>S2 .

FUNCTION CONC(Sl, S2: STRING) : STRING;
This function returns a string which is the result of
the concatenation of the two specified strings.

FUNCTION CPYSTR(S: STRING) : STRING;
This function returns a copy of the specified string.
The typical use for this function is in the assignment
of one string variable to another. This prevents both
string variables from referencing the same string. EG.
STRING1:=CPYSTR(STRING2); will cause STRING! to refer
to a different copy of STRING2. STRINGl: 2 STRING2; causes
STRINGl to refer to the same copy of STRING2 and any changes
in the value of STRINGl would cause STRING2 to change also.

FUNCTION DELETE($: STRING; POSITION, LENGTH: INTEGER) : STRING;
This function returns the string which results after deleting
a specified number of characters beginning at the specified
position in the string.

FUNCTION FIND(SUBSTRING, S: STRING) : INTEGER;
This function returns an integer number which points to the
start of the specified substring within the specified string.
If the string does not contain the substring then the returned
value is O.

FUNCTION INSERT(SUBSTRING, S: STRING; POSITION: INTEGER) : STRING;
This function returns a string which is the result of inserting
the specified substring into the specified string at the
specified position.

FUNCTION REPLACE(OLDSTRING, NEWSTRING, S: STRING) : STRING;
This function returns the string which results after
replacing the old substring with a new substring within
strings.

- 24 -

RANDOM ACCESS FILES

Random Access files refers to a file access method where any
record may be READ or WRITTEN to in any order. As most Pascal
programmers know, Pascal does not define the Random file type.

The following Pascal procedures and functions will allow random
access to files on the TRS-80. The following Pascal routines are
supplied in object code format on the release disk (RANDOM/OBJ) .
When using random access files, these routines should be
declared as external in the main program. Then simply link to
the supplied object file of random access routines with the
linking loader to satisfy any external references.

The object code for random files is built in to the RUN
command.

The following declarations should be included in the source
program if you use the random file routines.

RANDOM FILE ROUTINES

PROCEDURE OPENRAND(VAR F:FILETYPE; RECORDLEN:INTEGER; PATHNAME:STRING;
VAR STATUS:INTEGER); EXTERNAL;

The purpose of this routine is to open a random file. The F
variable is of any file type. Random file types are fixed in
length and should be declared as a FILE OF DATATYPE. A text
file is not a particularly useful DATATYPE. The filetype may be
any structure such as an ARRAY, RECORD, etc ... RECORDLEN must be
the size required for the datatype. The SIZE(J) function may be
used to determine the RECORDLEN. PATHNAME is the physical
filename on disk. You must prompt the user if it is to be
changed at runtime. STATUS is a code returned by Pascal or the
operating system. The status code returns the status of an
operation on a random file.

- 25 -

PROCEDURE READRAND(VAR F:FILETYPE; RECORDNUM:INTEGER;
VAR DAT:DATATYPE; VAR STATUS:INTEGER); EXTERNAL;

This routine is used to read data from a random file. The
RECORDNUM is the record number to be read. DAT is the buffer
for the data and must be declared as the same type as the
components of FILETYPE. (eg. if FILETYPE = FILE OF INTEGER;
DATATYPE = INTEGER;)

PROCEDURE WRITERAND(VAR F:FILETYPE; RECORDNUM:INTEGER;
VAR DAT:DATATYPE; VAR STATUS:INTEGER); EXTERNAL;

This routine is used to write data to a random file. The
RECORDNUM is the record number to be written. DAT is the buffer
for the data and is declared to be of the same type as the
components of FILETYPE.

PROCEDURE CLOSERAND(VAR F:FILETYPE); EXTERNAL;

Random files are not automatically closed. This procedure
must be used before the program terminates to close all random
files that have been opened. Failure to close a random file
may result in loss of the file.

As with random files on any operating system, there are some
peculiarities about random files. For example:

(1) If you WRITE record number 1 and WRITE record number
100, and then read any record from 2 to 99, the
returned buffer will contain trash . The data will be
whatever was previously on the diskette, probably the
contents of an old file. This is because the operating
system does not keep that much context. It is up to
the user to keep track of unwritten records so they
are not READ.

(2) Random file record sizes may be from 1 to 256 bytes only.
All blocking is taken care of by the system.

(3) The standard functions EOLN, EOF have no meaning for
random files. The status codes as returned by the
above routines (the parameter STATUS) perform those
fuctions where applicable.

- 26 -

(4) The procedure OPENRAND is used to open a file for
reading and writing. Opening an empty file and
reading is perfectly legal.

(5) Random file record numbers are defined from 0 .. 32767.

(6) As with normal files, if a file is declared LOCALLY
within a procedure and opened, (not passed in as a
parameter) once the procedure is exited, Pascal will
automatically close the file using the standard CLOSE
file routine for non-random files and postion the EOF
mark in the directory at the last record read or
written. This may not be the correct position as
desired by the programmer. An explicit call to
CLOSERAND should be used to close the random file and
position the EOF. This will always correctly place the
EOF mark.

(7) You may declare a file to be:

(*WHERE XX IS ANY RECORD LENGTH FROM 1 TO 256*)
TYPE LI NE = ARRAY (• 1.. XX.) OF CHAR;
VAR F:FILE OF LINE;

Once the file has been opened, you may access it by
using the READRAND and WRITERAND external procedures
even if the file was not created by Pascal. There is
only one procedure for opening random files (no reset
and rewrite). You may read or write to a random file.

The random file routines return a STATUS of O if no
error occurred during the random file operation. Below
is a list of the error codes returned.

Random File Error Codes
Returned via STATUS parameter

(Generated by the operating system:
See TRSDOS error messages in your Disk Operating
System Manual for a complete list of TRSOOS errors)

15 - DISK WRITE PROTECTED
26 - DIRECTORY SPACE FULL
27 - DISK FULL
28 - END OF FILE
29 - RECORD NOT FOUND (PAST EOF)

(Generated by the random file routines)

128 - PATH NAME IS NULL OR TOO LONG
129 - RECORD LENGTH IS NOT BETWEEN 1 AND 256
130 - FILE IS ALREADY OPEN
131 - FILE IS NOT OPEN

- 27 -

If multiple random file types are used in a program, the
type transfer operator(::) may be used to allow the random
file routines to be called with different file and data types.
The declarations may specify one of the file and data types
used in the program. Any other files used must then utilize
the type transfer operator when calling one of the random
file routines. The other file and data types must be type
transferred to the same types used in the declarations to
avoid a type mismatch error during the compile. The following
example illustrates the use of the random file routines.
The status may be checked after each random file operation to
determine if an error occurred. The returned status will be
0 if no error is detected during an operation.

PROGRAM sample;
TYPE file!= FILE OF CHAR;

file2 = FILE OF INTEGER;
VAR fl : file!;

f 2 : f ile2;
value!, ch: CHAR;
value2, status, number: INTEGER;

PROCEDURE OPENRAND(VAR f : file!; length: INTEGER;
name: STRING; VAR status: INTEGER); EXTERNAL;

PROCEDURE CLOSERAND(VAR f : file!); EXTERNAL;
PROCEDURE READRAND(VAR f : file!; number: INTEGER;

VAR data : CHAR; VAR status : INTEGER); EXTERNAL;
PROCEDURE WRITERAND(VAR f: file!; number: INTEGER;

VAR data: CHAR; VAR status: INTEGER); EXTERNAL;
PROCEDURE checkstatus(status: INTEGER);
BEGIN

IF status<>0 THEN
WRITELN('* 1/0 ERROR: code number= ',status:3,' *'>

END;
BEGIN

{open file "Fl/DAT"}
OPENRAND(fl,SIZE(CHAR),BLDSTR('Fl/DAT'),status);
{open file "F2/DAT"}
OPENRAND(f2::filel,SIZE(INTEGER),BLDSTR('F2/DAT'),status);
FOR number:= 0 TO 255 DO

BEGIN
{write the ascii character set to Fl/DAT}
ch:= CHR(number);
WRITERAND(fl,number,ch,status);
{write the ordinal values of the character set to F2/DAT}
WRITERAND(f2::filel,number,number::CHAR,status);
END;

FOR number : = 0 TO 255 DO
BEGIN
{read the ascii character set from Fl/DAT}
READRAND(fl,number,valuel,status);
{read the ordinal values of the character set from F2/DAT}
READRAND(f2::filel,number,value2::CHAR,status);
END;

checkstatus(status);
CLOSERAND(fl);
CLOSERAND(f2::filel)

{check error status}
{close Fl/DAT}
{close F2/DAT}

END.

- 28 -

MISCELLANEOUS

COMPILER

The compiler outputs the lines of a program which contain
errors to a file named PASCAL/ERR. If this file does not
already exist, then the compiler creates it the first time an
error is detected during a compile. For each line containing
an error, the line number, the line itself, and the error
number(s) are sent to this file. This makes it possible to
discard the compiler listing (map to :D) and still be able to
determine what errors were detected during a compile.

The compiler reads in the first 80 characters of each
line of a Pascal program. Previous versions read only the
first 72 characters of a line.

The compiler uses the\ (backslash) character to signify
that the remainder of a line is to be treated as a comment.

a:• l; \this is a comment

The compiler now allows you to use the LOCATION function
on procedures and functions. This is useful when interfacing
to assembly language routines from Pascal. You may use the
LOCATION function rather than fixed addresses inside the Pascal
program. Then if the location of an assembly language routine
must be changed, it does not require a recompilation of the
Pascal program which uses it.

The minimum stack required by PASCAL/CMD is currently
3900 bytes. If you specify less than this amount, 3900
will be used. PASCAL/CMD requires this much stack even
though the stack used message at the end of a compile may
indicate that less was needed. PASCALB/CMD has no such
minimum.

- 29 -

LINKING LOADER

The prompt PROGRAM= has been removed from the command
of the linking loader. This prompt requested the name of the
currently loaded program when building a command file. The
program name prompt has often been confused with the file name
prompt. Since the program name is not essential, it has been
removed to avoid confusion.

The linking loader now accepts lower case for commands,
file names, or devices. Lower case is translated to upper
case.

The linking loader now displays an error message when there
is an attempt to build a command file to the screen or to a
full or write protected disk.

RUNTIME

The runtime now recognizes the' (backquote) character as
EOF (end of file) when receiving input from the keyboard. On
the model I and III, this character is generated by <shift><@>
(hex 60).

The runtime now displays English error messages for the most
commonly occurring runtime errors. It also identifies the error
as being a runtime error. This is especially helpful when using
the compiler. The compiler has its own runtime which can
detect runtime errors and terminate a compile. Runtime errors
such as out of stack or out of heap previously caused the error
numbers 01 and 02 respectively to be displayed. These numbers
may be confused with the compiler detected error numbers 1 and
2 which are totally independent error messages. Now when the
compiler runtime detects an out of stack condition, it displays
the fact that a runtime error occurred and that the error was
OUT OF STACK.

- 30 -

The runtime periodically checks to see if the break key is
pressed. If so, then the executing program terminates. This
applies to all supplied /CMD files except ED/CMD, and also
applies to all /CMD files which you create using the linking
loader. It should be noted that when you break out of an
executing program, no files are closed. Any files which are
open for writing may be lost. The break key will not terminate
a program while the program is waiting for input. It must be
actively executing for the break key to have an effect.

ERROR CORRECTIONS

SUBRANGES

The problem of reading a value into a subrange variable
with a non-zero lower bound has been corrected.

REAL FORMATTING

Real formatting has been corrected so that it now conforms
to the ISO standard for Pascal. The following now applies when
outputting real values.

1. If no field specifiers are present, the format defaults
to exponential format with a field width of 12 for single
precision and 20 for double precision.

2. If only the first field specifier is present, the format
is exponential with the specified width. A minimum width
of 8 is used, even if a smaller width is specified.

- 31 -

3. If both field specifiers are present, the format is fixed
with the f_irst field specifying the total number of
characters to output and the second specifying the number
of characters to the right of the decimal point. If the
first field specifier is not sufficient to accomodate the
number being output, the width is expanded to a size
sufficient to display the number.

Examples:
WRITE(25.0)
WRITE(-0.1:12)
WRITE(3.2:12:2)

--> 2.SOOOOE+Ol
--> -l.OOOOOE-01
--> 3.20

4. The maximum number of characters output in either fixed or
exponential format is 32.

- 32 -

MISCELLANEOUS PATCHES

The following patches may be applied using the PATCHER utility
to alter the execution characteristics of the TRS-80 Pascal
system. They should be entered into a text file using the
Blaise text editor. Then they are used as patch control
files for the PATCHER utility. For complete instructions on the
use of the PATCHER utility see the first section in the
Beginners Guide.

Blaise Editor Patch

The following patch will change the definition of the command
key from the CLEAR key on the TRS-80 keyboard to the/ (slash)
key. When using LOOS with the KSM filter, · the CLEAR key gets
mapped to a SHIFT CLEAR which may be inconvenient.

MODEL I or MODEL III
; The clear key will now be generated by the / key . '
; The/ key is generated by a // sequence.
F, ED/CMD, PASCAL
P,459A,05AC,0001,1F,2F
P,45B2,058B,0001,1F,2F
W,F4C9
E

LINKLOAD Patch

When a user program terminates normally, a stack and heap used
message is displayed to the terminal. This message may be
suppressed by applying the following patch to the linking loader.
All command (/CMD) files built with the patched LINKLOAD utility
will not display these messages upon normal termination. This
is useful when producing application programs for resale.

MODEL I
F, LINKLOAD/CMD, PASCAL2
P,2ACC,085A,0003,2A,C3,49,2D,40,40
W,F7A6
E

MODEL III
F, LINKLOAD/CMD, PASCAL2
P,2ADC,0852,0003,2A,C3,ll,2D,44,40
W,F?AE
E

LINKLOAD and RUN Patch

The following patch will disable the BREAK key from being able
to terminate a program.

Model I or Model III
F,RUN/CMD,PASCALl
P,0010,0S0E,0001,00,E9
W,FAF2
F,LINKLOAD/CMD,PASCAL2
P,0010,0S0E,0001,00,E9
W,FAF2
E

- 11 -

Tutorial

Chapter

1

2

3

4

5

6

7

8

9

10

11

TUTORIAL

Table of Contents

Introduction••.....•..................
History of Pascal. Why Pascal?

Starting Concepts ...•........•...............
Program, begin, end, write, writeln.

Data Concepts•.........•...........
Variables,Types: integer, real, char, text
and boolean. Const section.

Advanced I/O•.........•...
Rewrite, write, writeln, reset, read, readln.

Statements•.........•............
Assignment statements, compound statements,
multiply, divide, add, subtract.

Flow control .•...............................
For loop and case statement.

Decision testing
Logical operators AND, OR, NOT. Relational
operators > , < , >=, <= <>, = . Flow
control: IF, WHILE, REPEAT loop control
statements.

Procedures and functions
Global and local variables, parameters,
scoping, nesting.

Advanced data types
Structured data type: The array, record. With
statements. User defined types: Enumerated,
subrange. File of TYPE.

Dynamic memory
Pointer types, new, dispose.

Se ts .. .
Declarations, set operations.

Page

2

6

9

13

17

23

27

32

41

52

59

Appendix A. • 62
Information about the Database program.

Preface

This section is intended to be a tutorial for Pascal programming.
It was specifically designed as a learning aid for TRS-80 Pascal, and
is an intermediate level tutorial guide. It is assumed that the reader
has had some programming experience. This tutorial is an excellent
teaching aid for most other Pascals because TRS-80 Pascal is an
implementation of standard Pascal. Any extensions to the language are
covered in the TRS-80 Pascal Reference Manual. In this book the
standard Pascal referred to is defined by Pascal USER MANUAL AND
REPORTC2nd edition) by Kathleen Jensen and Nikalus Wirth
(Springer-Verlag, 1975). People with some exposure to BASIC or other
programming languages should have no trouble understanding the
explanations or example programs. It may be helpful to refer to the
TRS-80 Pascal reference manual, for additional details and answers.
This tutorial was designed to be as clear and precise as possible for
the newcomer to Pascal. It avoids all tricky and confusing
explanations, and in many cases includes program segments as examples.
This greatly reduces the clutter that often gets in the way of
learning computer languages.

The first chapter examines the major advantages of Pascal as a
general programming language. You may skip this section and begin
reading chapter two if you wish. However, there are many important
aspects about Pascal that are explained in chapter one. This tutorial
will provide a logical and structured approach to learning. After
all, that's what Pascal is all about.

- 1 -

Chapter l

INTRODUCTION

Pascal was created by Professor Nicklaus Wirth at the Swiss
Technical Institute in Zurich Switzerland. It was first announced in
1965 when the most popular programming languages in use by the
computer industry were Fortran and Cobol. In teaching environments,
like Universities, Algol was a popular language for introducing
students to computer programming. Wirth felt that languages like
Fortran and Cobol were too loosely structured to promote good
programming habits to students. Algol, although more structured, had
significant drawbacks. Wirth decided to depart from normal teaching
practice and designed a new language patterned after Algol, to be his
new teaching language.

Pascal inherits the structured control statements of Algol and adds
powerful data structuring capability. The language was designed to
promote good programming practices and encourage clarity and
modularity in programs. Since the first implementation of Pascal on
the CDC-6600 computer system in 1971, Pascal has proven to be one of
the most popular programming languages in existence.

Pascal has the distinction of being created for the purpose of
making the development of computer programs a structured and logical
process. Pascal contains the best features of most high level
programming languages. Many college instructors at major universities
today use Pascal or Pascal like languages to teach structured
programming classes. Structured programming classes emphasize the use
of guidelines and rules for developing computer programs. Some of the
goals of structured programming are to encourage modularity and
functionality, promote good documentation and to generate programs
that have smooth flows of logic from the beginning to end. Programs
are usually developed in Pascal or an English like Pascal and then
hand translated to any available computer language such as Basic, for
execution.

Although the implementation language may not be highly structured,
the final program will be more clear and readable. Indeed, that is
exactly what most Pascal programmers do when they need to use other
languages. However, this is no replacement for implementing the
program in Pascal, as there are no translations for the rich and
powerful data structures and many other features that exist in Pascal.

- 2 -

Introduction Chapter l

Data types and structures are two important features of the
language. They comprise one of the largest differences between
languages such as Pascal and BASIC. Most BASIC programmers are
familiar with the data types integer and real. A data type is simply
the kind of information that may be stored in a variable. Pascal
includes nine predefined types: char, integer, real, set,
file,array,record, boolean and text plus an infinite variety more, as
you may invent data types at will.

Data structure is another name for a variable type such as the
array. Pascal allows you to build new data structures as desired.
The use of record data structures can be very powerful when building
or maintaining data bases. With one simple output statement, an
entire data structure may be written to a file.

Variables are assigned storage only as needed during program
execution, thus reducing demands on memory. They also may have names
with as many characters in them as desired provided that the first 8
characters form a unique name. Long names don't require any more
storage space than short ones .

Extra spaces,tabs, and carriage control may be placed freely in a
source program, except in the middle of identifiers and character
strings. An identifier is defined to be a program, variable,
constant, type, procedure or function name. Comments may be inserted
anywhere spaces are allowed and are delimited by(**) or { } • These
features don't affect the speed or the size of the final program, and
greatly improve readability.

The concept of local variables is important. Variables declared in
this manner will have restricted access by other parts of the program.
This can prevent accidental changes in their values.

If there are a series of statements that need to be executed by
different sections of the program, they may be placed in a procedure
or function declaration . A procedure or function is just a collection
of program statements that may be called to perform their task at
various times during the program. Repetitive programming may be
prevented by creating libraries of commonly used procedures or
functions. Parameters may be passed to these subroutines by "value or
reference".

- 3 -

Introduction Chapter 1

When a parameter is passed by reference, the actual parameter is
passed to the procedure, and if the procedure alters its value, the
parameter's value is changed in the rest of the program. When a
parameter is passed by reference, the argument must be a variable.

When a parameter is passed by value, what is passed is a copy of
the argument. If the procedure alters the parameter's value, the
value in the rest of the program is not changed. When a parameter is
passed by value, its argument may be a variable or any legal
arithmetic expression. Parameters passed by value can prevent
accidental changes in a value by procedures.

A careful use of procedures and functions will make the program
more readable and will eliminate branching statements that are
difficult to follow.

The logical operators AND, OR, and NOT along with the relational
operators: greater than">", less than"<", equal"=", not equal" <> ",
greater than or equal">=", less than or equal"<=" are available in
Pascal. Statements like: IF(count < 10) and (not FAILURE) then "do
the following", make control statements very clear.

There are six statements in Pascal used for the flow of control.
Loop control is performed by the FOR, REPEAT and WHILE statements.
Conditions are tested with the IF and CASE statements. Branching is
accomplished by the GOTO statement.

Program execution speed may be of particular importance in certain
applications. TRS-80 Pascal programs execute between 10 and 50 times
faster than most interpreted Basics on the same computers. In fact,
they are significantly faster than many other Pascal implementations.

- 4 -

Introduction Chapter 1

As a general programming language, Pascal has the following
advantages.

(1) The powerful ability to build new data types and
structures as desired.

(2) The control statements while, repeat, for, if,
case and goto.

(3) The logical operators AND, OR, NOT.
(4) The relational operators: equal to, less than,

greater than, less than or equal to, greater
than or equal, not equal to.

(5) Recursive procedures and functions with
parameter lists.

(6) The ability to insert blanks and comments
in the source program easily,and long
variable names, with no space or time penalty.

(7) User controlled dynamic memory management.
(8) Efficient memory management of

variables,functions and procedures.
(9) Arrays of one or more dimensions.

(10) Record data structures.
Cll) Sets and set operations.
(12) Subrange and enumerated data types.
(13) Named constants.
(14) Read and write statements plus formatted write

statements.
(15) Built in functions and procedures.

TRS-80 Pascal has the added advantage of being a full implementation
of standard Pascal, thus program portability is greatly enhanced.
These features, and the fact that programs generated by TRS-80 Pascal
execute much faster than programs generated by most BASIC or other
Pascal systems, make TRS-80 Pascal a logical choice as a general high
level programming language.

- 5 -

Chapter 2

STARTING CONCEPTS

At the simplest level of structure of a Pascal program are the
program, begin, and end statements. They may be thought of as the
outer shell that must be around all programs. The actual program is
placed between these begin and end statements. Example:

Listing 1.1

PROGRAM test:
BEGIN
END.

This is a completely legal Pascal program although it actually does
nothing. We can modify it by adding a writeln statement to it.

Listing 1.2

PROGRAM test:
BEGIN

WRITELN(OUTPUT, '* Pascal is a very structured language.'>:
WRITELN(OUTPUT, '* It promotes good programming habits.'):

END.

The program will write to the file associated with
OUTPUT the following message.

* Pascal is a very structured language.
* It promotes good programming habits.

- 6 -

Starting concepts Chapter 2

The two writeln statements comprise the only action in the program.
The OUTPUT in the writeln tells the computer to write the message to
the file associated with the logical name OUTPUT. How this
association is accomplished is a computer dependent process, and is
explained in the System Implementation Manual. The string in single
quotes is a text string that may be composed of printable characters.
Notice two things about this program. First, the text string may not
be broken up across line boundaries, however blanks may be used freely
elsewhere to make the program more readable. Secondly, a semi-colon
is required after each writeln statement. Ih fact, semi-colons are
required after most Pascal program statements. For now, a good rule
of thumb is to always include a semicolon after legal Pascal
statements. The program name is test, but may be any identifier where
the starting character is a letter. The"." must always occur after
the last END statement in the program.

Another output statement similar to the writeln statement is the
write statement. In the first sample program the two messages were
written to different lines on the file . The writeln statement caused
the file position pointer to reposition to the beginning of the next
line after each message was written. The file position pointer is
another name for the cursor when the file I/O is directed to the
terminal. The write statement, does not reposition the cursor after
the message has been written. Instead, the cursor remains at the end
of the last message, and the next text will appear on the same line.
The cursor represents the point on a line where text will appear from
the next write statement.

PROGRAM test;
BEGIN

Listing 2.1

(* the purpose of this program is to give an example*>
(* of how to use the WRITE and WRITELN procedures *)
WRITE(OUTPUT,' * Now is the time');
WRITE(OUTPUT,' for all good programmers');
WRITE(OUTPUT,' to learn');
WRITELN(OUTPUT,' Pascal.');
(* The next statement starts on a new line*>
WRITELN(OUTPUT,' * You will become a Pascal magician.');
END.

- 7 -

Starting concepts Chapter 2

The following message will be written to output.

* Now is the time for all good programmers to learn Pascal.
* You will become a Pascal magician.

If you noticed, the text enclosed between the(**> did not affect
the program execution. They are simply comments by the programmer to
help clarify the logic in the program. Comments may be especially
helpful later when you have forgotten how the program functions. They
may be inserted anywhere except in the middle of identifiers or text
strings. An identifier is just another name for a program, variable,
constant, procedure or function name. Procedures and functions will
be explained later.

Tutorial Quiz 2.0

(1) The first statement of a Pascal program must be the
statement.

(2) The statement will not move the cursor to
beginning of the next line.

(3) The statement will move the cursor to the
beginning of the next line.

(4) Most Pascal statements are followed by a .
(5) The statement must be the last statement

of a program.

(6) Quoted ______ may not be broken up across
line boundaries .

Answers:

(1) program (2) write (3) writeln (4) semicolon

(5) end (6) strings

- 8 -

Chapter 3

DATA CONCEPTS

Variables

Variables in Pascal serve the same purpose as they do in most other
programming languages. They serve as storage areas for the
information that the programmer may wish to manipulate. These storage
areas are referred to by names that are chosen by the programmer.
Each variable name must start with a letter. It may be composed of
any combination of letters and digits, although in many Pascal
implementations, the first eight characters must form a unique name
within the program.

Reserved words

There are certain words in Pascal that have special meanings.
These words are called reserved words, and variables may not have
these names. For a complete list see the TRS-80 Pascal Language
Reference Manual.

Variable types

Variables must have associated with them a specific type. The type
is the kind of information that is going to be stored in that
variable. For example, the variable "taxnumber" may represent a
business tax number. This taxnumber might take on the numerical value
of 1 to 100 at any time in the program. This would be an example of
the type, integer.

Declaring variables

All variables must have their specific type declared in a special
section of Pascal programs c~lled the var section. There are five
predefined variable types in Pascal that we will concern ourselves
with at this time. They are integer, real, char, text and boolean.
The var section of a program consists of the word VAR followed by any
number of variable declarations. A variable declaration has the form
of variable name: variable type; . A colon separates the variable
name from the variable type, and a semicolon must follow each variable
declaration.

- 9 -

Variables and types Chapter 3

Integer variables

The type integer may be used to represent whole numbers. The
minimum and maximum size allowed by Pascal is computer dependent, but
on many micro computers they range from -32768 to +32767. The
following is a program example of a variable declared as an integer.
Notice that a colon is required to separate the variable name
taxnumber, from the variable type, integer.

Real variables

Listing 3.1

PROGRAM test;
VAR
taxnumber:INTEGER;
BEGIN
END.

The type real may be used where a variable must store numbers that
may have fractional or decimal values. The numbers 2.98, 3.047,
0.0009 , 0.009 and 37.0998 are all examples of real numbers. Real
numbers must start with a digit and may contain a decimal point. If a
decimal point is present, a digit must follow the decimal point. The
numbers .009, 10. are illegal real numbers, as there is no digit
before and after the decimal point. The size and precision of real
numbers are computer dependent . Real variables may represent the
dollar selling price of some product by a store, or an entry into your
checkbook. They are declared as follows:

Listing 3.2

PROGRAM test;
VAR

taxnumbr:INTEGER;
cost :REAL:

BEGIN
END .

Note that the indentation of the declaration section does not
affect the execution of the program.

- 10 -

Variables and types Chapter 3

Char variables

If a variable is declared as a char type, then it may represent a
single character such as the character 'A'. In Pascal, the characters
may be composed of letters, digits and other special symbols. If a
digit is to be referred to as a character instead of a number, it is
enclosed in single quotes like the character string was in program
listing 2 . 1. The only difference is that a char variable may only
represent one character at a time.

Text variables

Variables declared to be of the type text are used to direct output
or input information to files on disks, or to other devices. Text is
predefined to be a special file of char.

Boolean variables

A variable declared as the type boolean may only have two values.
They are true and false . This kind of variable is primarily used in
flow control statements. Boolean variables are typically used in the
WHILE, IF or REPEAT control statements. These statements will be
covered in later chapters.

Const section

Often, specific variables will have fixed values during program
execution . In this case you may declare these values as constants.
In Pascal, they are declared in the CONST section. The const
declaration section is placed between the program and the first begin
statement of the program. Constants may have names like variables do.
In fact their names should reflect their nature. Constants may be
integers, real numbers or a text string. A text string constant is
any character string enclosed between single quotes. A string
constant generally may be used anywhere a packed array[l .. n]of char
variable may be used. This variable type will be explained later.

- 11 -

Tutorial Quiz 3.0 Chapter 3

(1) ____ serve as storage areas for information
that the programmer may wish to manipulate.

(2) Variable types are declared in the

(3}

section of the program .

Five predefined type of variables in
Pascal are

,

(4) The syntax of a variable declaration is
var variable name ___ ;

(5) Variables declared as the type ____ may take
on the value of letters, digits and other
special symbols .

(6) A variable declared to be of the type
is used to direct I / 0 to files.

(7) A value that is fixed in the program and will
not change may be declared as a constant
in the _____ section of the program.

Answers:

(1) variables (2) type (3) char, integer, boolean, real, text

(4) type (5) char (6) text (7) const

- 12 -

Chapter 4

ADVANCED I/O

Procedures rewrite, writeln.

Can you guess what this program will do if you run it?

Listing 4.1

PROGRAM alpha;
CONST

pi = 3.141597;
maxtax = 2000;
tstring = ' I am a

VAR
out :TEXT;
max :REAL;
number: INTEGER;

BEGIN
REWRITE(out);

Pascal Wizard';

WRITELN(OUTPUT,'Program starting execution.');
WRITELN(' The value pi= ',pi);
WRITELN(' The value maxtax = ',maxtax);
WRITELN(tstring);
WRITELN(out,'This program tests file I/O');
WRITELN(OUTPUT, 'Program finished.');

END.

From example 2.1 you already know that the first and last writeln
statement will cause the program to direct the messages to the file
associated with output. The following message will be written to
output.

Program starting execution.
The value pi= 3.14159
The value maxtax = 2000
I am a Pascal wizard

Program finished.

The message, "This program tests file I/O", will be written to the
file associated with out.

ADVANCED I/0 Chapter 4

Examine the first writeln statement. In the specific case where
the first argument for the writeln statement is output, the user is
not required to declare output in the var section as with other files.
Notice also that there is no output argument in the second,third and
fourth writeln statements. In Pascal, it is not required to have
output as an argument. Output is a default argument. Ie: the
statements writeln(output,' help'>: and writeln(' help'): are
equivalent in Pascal. In Pascal the write and writeln statements may
have multiple arguments . The first argument always directs the I/O
operation to a specific file except for the case previously explained.
In listing 2 . 1 the two arguments were output and a text string.
Constants and variables may also be arguments. The values of the
variables and constants will be written in the same order as they
appear in the argument list.

Rewrite statement

The purpose of the rewrite(logical filename) statement is to open a
file on some hardware device, and ready it for writing. Note that the
previous contents of any file used in a rewrite statement will be
lost. The specifics of how to associate the logical filename in
parentheses with a physical filename is implementation dependent and
is explained in the TRS-80 Pascal System Implementation Manual.
Standard Pascal does not require the file output to have a rewrite
performed on it before it is written to. Output is the only file in
Pascal that does not require a rewrite before it is written to. It is
predeclared to be a textfile by Pascal.

Reset statement

The purpose of the reset statement is to ready a file for reading to
a program. A reset (logical filename) statement will open the
physical file associated with the logical filename and read the first
line. In TRS-80 Pascal, the first line is not read until required by
an EOF or EOLN function call. These functions will be explained
later. All files that are to be used for reading must be reset,
except Input. Input is a predeclared textfile within Pascal.

Read, readln statements

The read statement is similar to the write statement, except that
its purpose is to read information into the program instead of to
write information. The read statement will read a value into a
variable from a file and will leave the cursor at the last character
read.

- 14 -

ADVANCED I/0 Chapter 4

Specific reads on the same file will cause a series of inputs to
occur from the same line. When a read is performed on an integer or
real quantity in a text file, the read will start scanning the line
until any non-blank character is found. The next contiguous non-blank
characters will be interpreted by the read as the input value. If
another read is performed on the same file, the read procedure will
scan forward and repeat the process, until the end of line is reached.
If the end of line is reached before any integer is found , the scan
will continue at the beginning of the next line .

The readln statement performs the same function as the read
statement, except that the cursor will always be positioned to the
beginning of the next line after all inputs to the read statement are
satisfied, even if the end of line has not been reached. The readln
statement is not required to have arguments . The effect of such a
readln is to position the cursor to the beginning of the next line
without reading any values. The arguments allowed for the read
statement are variables . As with OUTPUT in the write statement, INPUT
is predeclared to be a text file. If a read statement does not have a
file argument , it is assumed to be the predeclared file INPUT.

Try running the following program. It will give you a little more
experience performing program I/O.

Listing 4. 2

PROGRAM testIO;
C* Purpose- the purpose of this program is to
(* demonstrate I/O to a text file using integer and
C* real input variables.
VAR

taxnumbr,emnumber
tax
ID

BEGIN

: INTEGER;
:REAL;
:PACKED ARRAY[l •. 72JOF CHAR;

*)

*)
*)

WRITELN(OUTPUT,'* Enter your federal tax number: ');
READLN(INPUT,taxnumbr);

END.

WRITELN(OUTPUT,'* Enter your dollar tax total: 1
);

READLN(INPUT,tax);
WRITELN

(OUTPUT,'* Enter your employee number,a space,'>;
WRITELN(OUTPUT,' followed by your business ID number:');
READ(INPUT,emnumber);
READLN(INPUT,ID);
WRITELN(OUTPUT,' Tax number = ',taxnumbr);
WRITELN(OUTPUT, 1 Dollar tax total= ',tax);
WRITELN(OUTPUT,' Employee number = ' , emnumber);
WRITELN(OUTPUT,' Business I.D. = ',ID);

- 15 -

ADVANCED I/O Chapter 4

The following I/O will occur at the terminal if the filename
associated with input and output is the local terminal.

* Enter your federal tax number:
32000 <user input>
* Enter your tax total:
2345.98 <user input>
* Enter your employee number,a space,
followed by your business ID number:
23455 4669 <user input>
Tax number
Dollar tax total
Employee number
Business I.D.

::z 32000
= 2345.98
= 23455

= 4669

Tutorial Quiz 4.0

(1) The predefined file variables-~-- and __ _
are not required to be declared in the var
section as the type text.

(2) The first argument in a ___ , ____ ,
, ____ statement directs I/O to a file

_o_r_d_e-vice.

(3) The purpose of the statement is to
open a file and ready it for writing.

(4) The purpose of the statement is to
open a file and ready l. t for reading.

(5) After a , the previous contents of
the file are lost.

(6) A ___ or ___ statement will cause the
cursor to move to the next line after execution.

Answers:

(1) input, output (2) read, readln, write, writeln

(3) rewrite (4) reset (5) rewrite (6) readln, writeln

- 16 -

Chapter 5

STATEMENTS

Assignment statements

From previous examples, you know how to read a value into a
variable and how to write it. Now you will learn how to alter its
value within the program. The statement that does this is the
assignment statement. It allows you to set a variable's value equal
to an expression. An expression may be a variable name or a series of
arithmetic or boolean operations. A simple assignment statement takes
the form of variablenamel := variablename2; . The ft := ft operator
causes the variable on the left hand side to become equal to the value
of the variable on the right hand side.

Listing 5.1

Program MAGIC;
VAR

intrate,principle,anint,calc:REAL;
BEGIN

WRITELN(' ******* Interest rate problem*******');
WRITELN(' Enter annual interest rate:');
READLN(intrate);
WRITELN(' Enter the principle amount of loan:');
READLN(principle);
calc:= intrate * principle;
anint:=calc;
WRITELN(' Your annual interest payment = ',anint);

END.

Arithmetic operators

In the program listing 5.1 you may have noticed the statement
"calc:= intrate * principle" • The"* "is the multiply operator in
Pascal. There are seven arithmetic operators in Pascal with
precedence as follows :

- 17 -

Statements Chapter 5

OPERATOR PRECEDENCE TABLE 5.1

Symbol Precedence

(1) Highest

• (2)

I (2)

div (2)

mod (2)

+ (3) Lowest

(3) Lowest

Operator precedence

Description

unary operator. Negates a single
argument.

Multiplies two arguments

Divides two real arguments

Divides two integer arguments

Divides two integer arguments and
keeps the remainder as the result.

Adds two arguments

Subtracts two arguments

If an arithmetic expression is composed using different operators
without any parentheses, the order of evaluation is based on the above
table, where operations with the highest precedence are performed
first. Any operations at the same level are performed in left to
right order.

Parentheses

In Pascal, this natural order of precedence may be altered by
enclosing a portion of the expression in parentheses. The parentheses
has the highest precedence of all operators. Parentheses may be
nested to alter the evaluation sequence as desired. In this case,
operations buried deepest within are evaluated first.

- 18 -

Statements Chapter 5

The following program will illustrate the use of the arithmetic
operators and parentheses.

Listing 5.2

PROGRAM math;
CONST

VAR

fudge = 100;
lossacre = 0.50;

acsoy,acgreen
prsoy,prgreen
profit,overcost

BEGIN

: INTEGER;
:REAL;
:REAL;

WRITELN(OUTPUT,' **** Farmers profit analysis program**** ');
WRITELN(OUTPUT, '* Please enter the following information:');
WRITELN(OUTPUT, '* Acres planted in soy beans= ');
READLN(INPUT,acsoy);
WRITELN(OUTPUT, '* Profit per acre of soybeans= ');
READLN(INPUT,prsoy);
WRITELN(OUTPUT, '* Acres planted in green beans= ');
READLN(INPUT,acgreen);
WRITELNCOUTPUT, '* Profit per acre of green beans= ');
READLN(INPUT,prgreen);
WRITELN(OUTPUT, '$$$ COMPUTATION IN PROGRESS$$$');
profit:: acsoy * prsoy + acgreen * prgreen

- (fudge/ (acsoy+acgreen) * lossacre);
WRITELN(OUTPUT, I Your computed profit is');
WRITELN(OUTPUT,profit);

END.

The profit calculation uses parentheses to alter the normal
operator precedence. If the normal precedence is followed, the
calculation will yield the wrong result.

- 19 -

Statements Chapter 5

The order of evaluation without parentheses would be:

Cl) acsoy and prsoy multiplied.
(2) acgreen and prgreen multiplied.
(3) fudge / acsoy
(4) acgreen * lossacre
(5) result!+ to result2
(6) results - result3
(7) result4 + result 6

The desired result is obtained by including the parentheses as in
the example. The apparent order of evaluation would be:

profit:= acsoy * prsoy + acgreen * prgreen
-(fudge / (acsoy+acgreen) * lossacre> ;

(1) acsoy added to acgreen
(2) fudge/ result!
(3) result2 * lossacre
(4) acsoy * prsoy
(5) acgreen * prgreen
(6) result4 + results
(7) result6 - result3

If two numbers are operated on, the normal result will have a type
that is dependent on the argument types. The variable types required
to store the results of specific operations are summarized in the
following table.

* multiply real * integer = real result.
integer * real = real result.
real * real = real result.
integer * integer = integer result.

I real divide real I real = real result.
real/integer = real r e sult.
integer/real = real result.
integer/integer = real result

- 20 -

Statements Chapter 5

div integer divide integer div integer= integer result.
integer arguments only.

mod integer mod integer= integer
(integer div integer= remainder)

+ add integer + integer = integer result.
integer + real = real result.
real + integer = real result.
real + real = real result.

subtract integer - integer = integer result.
integer - real = real result.
real - integer = real result.
real - real = real result.

Compound statements

If a series of program statements are surrounded by a begin and end
statement, then the enclosed statements are considered a compound
statement. Compound statements are normally used as arguments to
control structures such as the WHILE and IF. A compound statement may
occur by itself anywhere in a Pascal program, however, its meaning
would be the same as if the begin and end were not present. The
important thing to remember about Pascal is that anywhere a single
statement may be used, a compound statement may be used.

- 21 -

Tutorial Quiz 5.0 Chapter 5

Cl) is the symbol for the assignment operator.

(2) If a series of statements are surrounded by a begin and
end, it is called a _____ statement.

(3) Operator precedence refers to the order in which an
is evaluated.

(4) The natural order of expression evaluation may be
altered by using

(5) The
first.

with the highest precedence will be evaluated

(6> Operators that have the same level of precedence will
be evaluated in ___ to ___ order.

(7) After executing the following Pascal statement, variable
x will have the value

Answers:

PROGRAM QUIZ:
VAR

x: integer
BEGIN

X :=4 + 5 * 2:
END.

(1) := (2) compound (3) expression (4) parentheses

(5) operator (6) left, right (7) 14

- 22 -

Chapter 6

FLOW CONTROL

FOR statements

If you wish to execute a series of statements a predetermined
number of times, you should use the FOR statement. The for statement
will cause a single or compound statement to execute a specific number
of times. Examine the following example.

Listing 6.1

PROGRAM math;
CONST

fudge = 100;
lossacre • 0.50;
prsoy • 195.98;
prgreen = 200.56;

VAR
acsoy,acgreen,nofields,select,fieldnumber:INTEGER;
profit,overcost: REAL;

BEGIN
WRITELN(OUTPUT,'* Farmers planting analysis program* ');
WRITELN(OUTPUT,'* How many fields do you have?');
READLN(INPUT,nofields);
FOR fieldnumber :• 1 to nofields DO

BEGIN

END.

WRITELN(OUTPUT, '* For field number ',fieldnumber);
WRITELN(OUTPUT,'* Acres planted in soy beans= ');
READLN(INPUT,acsoy);
WRITELN(OUTPUT, 'Acres planted in green beans= ');
READLN(INPUT,acgreen);
profit:2 acsoy * prsoy + acgreen * prgreen

- (fudge/ (acsoy+acgreen) * lossacre);
WRITE(OUTPUT, '* Your computed profit for field number

,fieldnumber,• is');
WRITELN(OUTPUT,profit);
END;

- 23 -

Flow control Chapter 6

The loop control variable is "fieldnumber" • This variable is
declared as an integer. When the loop starts its execution,
"fieldnumber" takes on the value of one for the first pass through the
loop. Successive loop iterations cause this value to be incremented
by one until its value is greater than "nofields" • At this point,
the loop will stop and control will be passed to the next statement in
the program. The lower and upper bounds on the loop control variable
do not have to be variables or constants, but may be arithmetic
expressions. The expression is evaluated one time, at the beginning
of the loop. The upper bound must be greater than or equal to the
lower bound for the loop to execute at least once.

A variation on the for loop just described causes the loop control
variable to be decremented by one instead of incremented by one. The
syntax for this is the same as above except that the "to" in the for
statement is replaced with "downto" . The initial upper bound on the
loop control variable must be larger than or equal to the lower bound
for the loop to execute at least once.

Case statement

The case statement is used as a selection control statement. It is
used when you need to execute one statement from a list of statements.
Notice the following program. In front of every statement in the
list, is a case selector constant. This selector value must be of the
same type as the case selector variable, and may be composed of a list
of values for each statement it precedes. The "end" must follow the
last statement in the list in order to terminate a case statement. We
will be concerned with selector variable of type integer at this time.

- 24 -

Flow control

Listing 6.2

PROGRAM moonphase;
CONST

VAR

dayphcorr = 10;
lencycle = 28.3;

daynumber,intphase :INTEGER;
startphase,phase,month,day,year :INTEGER;
realphase,phasecorrection :REAL;

BEGIN

Chapter 6

WRITECOUTPUT,' *** Lunar Phase calculation program');
WRITELNCOUTPUT,' ***');
WRITELNCOUTPUT,' Enter the month/day/year:');
READLN(INPUT,month,day,year);
startphase := (Cyear-78> * 365) + dayphcorr;
CASE month of

1: daynumber:=l;
2: daynumber:=32;
3: daynumber:=60;
4: daynumber:=91;
5: daynumber:=121;
6: daynumber:=152;
7: daynumber:=182;
8: daynumber : =213;
9: daynumber:=243;

10: daynumber:=274;
11: daynumber:=304;
12: daynumber:=334;

END; (*case*>
startphase := startphase + daynumber + day;
realphase := startphase / lencycle;
intphase := TRUNCCrealphase);
realphase:=realphase-intphase;
phase:=realphase * lencycle;
CASE phase OF
1,2,3,4,5,6,7

8,9,10,11,12,13,14

15,16,17,18,19,20,21

22,23,24,25,26,27,28

: WRITELN(OUTPUT,
'The moon is in its first quarter.');

: WRITELN(OUTPUT,
'The moon is in its second quarter.');

: WRITELN(OUTPUT,
'The moon is in its third quarter.');

: WRITELN(OUTPUT,
'The moon is in its fourth quarter.');

END;
END.

<*case*)
(*PROGRAM*)

- 25 ·

Flow control Chapter 6

The purpose of the program in listing 6 . 2 is to compute the phase
of the moon. Several examples of case statements are used with
differing case selector lists. The calculations are based on a known
starting phase of the moon at some past day,and year. The initial
startphase calculation yields the number of days since this known
starting date as a function of the number of years, corrected for the
starting phase of the moon. The remainder of the calculations simply
adjust this value to yield the whole number of days since the known
starting phase, then divide the resultant number of days by the lunar
cycle length in days. This program does not consider the effect of
leap years. Notice that mixed mode expressions consisting of real and
integer arithmetic are used throughout the calculations. A careful
study of the previous type result tables will verify their validity.
Notice that the value of realphase is used as an argument for the
TRUNC function. This is a predefined function available in Pascal
that will truncate a real number and store the result in an integer.

Tutorial Quiz 6.0

(1) The statement is used to make a single or
compound statement execute a specific number of
times.

(2) In successive loop iterations in a ____ loop,
the loop control variable is either incremented
by one or decremented by one.

(3) The ____ statement is used to select a
statement to execute from a list of statements.

(4) The "downto" and "to" are elements of the
statement.

(5) An must follow the case statement.

Answers:

(1) for (2) for (3) case (4) for (5) end

- 26 -

Chapter 7

DECISION TESTING

Often, it is necessary to make tests to determine the flow of
control in a program. The case statement is a simple example.
However, it may become necessary to perform more complex tests than
the case statement was intended for. Pascal has a powerful set of
logical and relational operators that make such testing easy. Most
logically complex programs use relational testing for advanced
control. The logical and relational operators are as follows:

Logical operators

and Will evaluate two boolean expressions, then
perform a logical "and" on them, returning either
a boolean "true" or "false".

or - Will evaluate two boolean expressions, then
perform a logical "or" on them, returning either
a boolean "true" or "false".

not - Will change a boolean value to the opposite
value.

Relational operators

It is often necessary to compare several variables for equality in an
expression to determine the flow of control. This may be accomplished
by relational testing. There are six relational operators in Pascal,
all with equal precedence. Their precedence may be altered just like
the arithmetic operators by the use of parentheses. If the relational
test fails, a Boolean False is returned by the expression. If the
test succeeds, then a true is returned. The operators are as follows.

=
>
>=

Equal to
Greater than
Greater than or equal to

- 27 -

<>
<
<=

Not equal to
Less than
Less than or
equal to

Decision testing Chapter 7

There are two constructs in Pascal that often use relational
testing for loop control. They are the while and repeat statements.
Almost all goto and other branching constructs may be replaced with
these statements. Unlike the goto statement, these statements force
simple and clear design of loops, often eliminating the unclear
conditions for exiting. usually, if it is not possible to formulate a
loop construct using the while, repeat and if statements, instead of a
goto, it is because the loop itself has not been properly defined.
le; the programmer does not have the specifics clear in his mind.

If statement

A typical use of a relational test is illustrated in the if
statement. In the following example let the variables "Monday" and
"October" be of the type boolean with their values both being true.

Listing 7.1

PROGRAM testIF;
VAR

Monday,October:BOOLEAN;
BEGIN

Monday:=true;
October:=true;
IF October AND Monday THEN

WRITELN(OUTPUT,'Its October and Monday')
(*notice no semicolon after the previous statement*)
ELSE WRITELN(OUTPUT,'Date unknown.');

END.

This program will print the message, "Its October and Monday" since
October is true, and Monday is true. This example illustrates the use
of the" if then else" statement in Pascal. If the expression is
evaluated to- be true, the first action will be taken. If it is false,
the statement following the else will execute . The statements may be
simple or compound. Notice that a semicolon may not precede the else
in the IF statement.

- 28 -

Decision testing Chapter 7

Notice the following example where "income" has been declared as
the type integer and "president" is of type boolean.

IF (income> 32000) AND NOT(president) THEN
BEGIN
WRITELN(OUTPUT, 'You are being audited by the IRS.');
WRITELNCOUTPUT, 'Please justify your deductions.');
END;

The value of the expression will be true if the integer value of
"income" is greater than 32000 and the boolean value of "president• is
false. When the value of "president" is false, the not operator will
reverse its value to true. This type of expression is one of the
strengths of Pascal. With a little experience, you will find it easy
to write expressions. This greatly improves the readability of
logically complex programs. Arguments for relational operators must
be of the same type. In the example, "income" must be declared as an
integer type for the statement to be valid in Pascal. For now, we
will concern ourselves with integer and boolean comparisons.

While statement

The while forces a statement to execute while some condition is
satisfied. The condition is the value of a boolean variable or the
boolean result of some expression. Some computation inside the loop
should change one of the variables used in the test to cause the
relational test to fail, terminating the loop. The while statement
will perform the test at the beginning of every loop. The while loop
might never execute any of the enclosed statements as the initial test
occurs before the loop is entered. In the next example, cnt, cost and
unitprice are declared as type integer, and underbudget is of type
boolean. Notice the following example syntax.

- 29 -

Decision testing Chapter 7

cnt:=0;
underbudget:=true;
WHILE (cnt < 20) AND (underbudget) DO

BEGIN
cnt:= cnt + l;
cost:= cnt * unitprice;
IF (cost> 200 > THEN underbudget :=false;
END;

The previous example will execute as a conditional loop instead of
a predetermined number of times as in the for loop. When "cnt" gets
incremented to twenty one, or cost exceeds 200, the loop will
terminate. Note that the "cost> 200" test could have been put in the
while expression just as easily.

Repeat statement

Another statement similar to the while is the repeat. A statement
or series of statements will be repeated until an expression becomes
true. The difference between the while and repeat may not be obvious.
The difference is that the repeat statement will always execute at
least once because the relational test occurs at the end of the loop.
The use of repeat sometimes causes problems for new programmers, as
there may be cases where you do not want the loop to execute at all,
however it will always execute at least once. An example of repeat is
as follows:

cnt:=0;
underbudget: 2 true;
REPEAT

cnt:~cnt + l;
cost:= cnt * unitprice;
inventory:=inventory +l;
IF (cost> 200) then underbudget:=false;

UNTIL(cnt >= 20) OR NOT(underbudget);

- 30 -

Decision testing Chapter 7

Notice that the test was changed to use the OR operator instead of
the and operator. This is simply due to the different context of the
two statements. There is no begin or end required. The statement(s)
to be executed are simply placed between the repeat and until. What
happens to this loop if the initial value of "unitprice" is greater
than 200? The loop will terminate on the first iteration, but alters
the value of "inventory". This might not be the desired result and
could cause an illegal entry into the inventory. In this situation,
the while statement would be the proper choice of a looping construct,
as it would detect this before "inventory" is changed.

Tutorial Quiz 7.0

(1) The logical operators in Pascal are: and,

(2) The and operator will return a value of , if the
value of the both expressions it is evaluating is true.

---(3) The or operator will return a value of
the expressions it is evaluating is true.

(4) The not operator will reverse the value of a
variable or expression.

, if one of

(5) The IF statement will execute the else portion of the
statement, if the value of the expression is

(6) The while statement will execute as long as the boolean
result of the expression is

(7) The repeat will execute all statements between the
repeat and until as long as the expression is __ _

Answers:

(1) or, not (2) true (3) true (4) boolean (5) false

(6) true (7) false

- 31 -

Chapter 8

PROCEDURES AND FUNCTIONS

Procedures

In the introduction, one of the claimed strengths of Pascal was
that it promotes modularity. Modularity is another name for
organizing a program into sections, each of which performs a specific
function, instead of one large block of continuous statements. One of
the reasons that Pascal programs may have a high degree of modularity
is that the language was designed with procedures and functions in
mind. In a few languages, they are not even supported, and in others,
passing parameters can become a major chore. This is not the case in
Pascal, as several different methods are available to pass data to
subroutines that need it. Furthermore, there are rules about how
procedures may call other procedures and access their internally
defined variables. These scoping rules, as they are called, may seem
a little restrictive, but they provide valuable protection. This
partitioning of the problem eventually decreases program size and
improves readabilty to the programmer or anyone who must maintain it.
A simple way to decide whether a procedure or function should be used
is to examine the problem and to decide if there are a series of
statements that need to be executed several times, and in different
parts of the program. The identified program segments should be
placed in a procedure or function.

Procedure structure

Procedures may be thought of as complete sub-programs that have
data passed to them as needed. In many descriptions written about
Pascal, they are often called one of the basic blocks, and in this
manual, a block will be considered to be a program, procedure or
function. The structure of a procedure is the same as for the
original program with a few exceptions. The data that is passed to a
procedure block is passed through a parameter list. The parameter
list is placed after the procedure name. Examine the following
program.

- 32 -

Procedures and functions

Listing 8.1
PROGRAM INSTRUCTIONAL;
VAR

number :INTEGER;
posnumber:INTEGER;
legal :BOOLEAN;

Chapter 8

PROCEDURE readn (VAR number: INTEGER; VAR
(* The purpose of this routine is to read
(* a positive number from a file in a

legal: BOOLEAN);
*)
*)

(* character format and convert it to an
(* format .

integer*)
*)

VAR
loopcontrol,forcntr,inc:INTEGER;
string :ARRAY [l • • 72]OF CHAR;

BEGIN
FOR loopcontrol :=l to 72 DO string[loopcontrol]:=' ';
loopcontrol :::O;
WHILE NOT EOLN(INPUT) DO

BEGIN
loopcontrol := loopcontrol + l;
READ(string[loopcontrol]);
IF(string[loopcontrol]=' ')THEN

(* Remove all leading blanks from array*)
loopcontrol:=loopcontrol - l;

END;
number:=0;
inc:=l;
FOR forcntr :=loopcontrol DOWNTO l DO

BEGIN
number:=number+((ord(string[forcntr])-ord('0'))*inc);
i n c : = i n c* l 0
END;

IF (number< 0) THEN
BEGIN
legal := false;
WRITELN('* Error - Illegal entry. Try again. ');
END

ELSE legal:= true;
END; (*procedure readn*)

BEGIN
legal:=false;
WHILE NOT legal DO

BEGIN
WRITELN('Enter any positive numbe r:');

READN(posnumber,legal);
END;

END.

- 33 -

Procedures and functions Chapter 8

The purpose of the program 8.1 is to read a positive integer in
from the file input and to check for illegal entries. This declared
procedure represents a typical use for a procedure, since it might be
called several times, from different places in the program. Notice
the eoln(input) • Eoln is a boolean function that will return a true
value when an "end of a line" of the file specified in the parentheses
is reached. As soon as the cursor is moved from this position by
another readln, it's value becomes false again. Notice also the
function call to ORD. ORD is a Pascal function that returns the
internal integer representation of a character.

Since there is only one copy of this procedure in memory no matter
how many calls there are, a considerable amount of memory space can be
saved. In fact, a procedure's variables do not occupy storage space
until the procedure is actually called.

The procedure declaration comes after the const and var section,
and before the first begin statement of the block in which it resides.
Remember, a block may be a main program, procedure or function.

Local variables

Local variables are declared in a particular procedure, function
or program. For example, the variable "forcntr" declared in
procedure readn, is local to "readn" and is accessible from "readn"
only. However, notice the variable "number" declared in the main
program block. Inside the procedure "readn" , the variable "number"
may be used without declaring it, since it appears in the calling
program. This means that if "readn" is called by the main program and
"readn" alters "number", then upon return to the main program,
"number" will have the altered value. This side effect can be avoided
by declaring "number" again in the procedure block. Then all
references to •number" will refer to a different variable. The use of
global variables should always be kept to a minimum, so as to minimize
any accidental changes in their values.

Procedure parameters

An alternate method of changing global variables within a procedure
is to pass them as parameters in a parameter list. This allows
different variables to be passed at different times and makes the use
of the global variable more visible in the program. The parameter
list is placed in the procedure declaration after the keyword
procedure. In the parameter list, a variable may be passed by two
different methods. These two methods are referred to as passing by
reference, or passing by value.

- 34 -

Procedures and functions Chapter 8

When a parameter is passed by reference, the actual argument is
passed to the procedure, and if the procedure alters its value, the
argument's value is changed in the rest of the program. When a
parameter is passed by reference, the argument must be a variable.

When a parameter is passed by value, what is passed is a copy of
the argument. If the procedure alters the parameter's value, the
value in the rest of the program is not changed. When a parameter is
passed by value, the argument may be a variable or any legal
arithmetic expression. Parameters passed by value will prevent
unwanted changes in a variable value by the called procedure. Notice
the following example parameter list.

PROCEDURE test (date: INTEGER; VAR profit:REAL; cost:REAL);

The variables "cost" and "date" will be passed by value. The
variable "profit" will be passed by reference. Every time a variable
is to be passed by reference, the keyword "var" must precede it,
otherwise it will automatically be passed by value.

It is sometimes hard for new programmers to understand the
difference between letting variables be global when accessing them in
a procedure, versus passing them by reference. There is a major
difference, in that different variables may be passed to a procedure.
The only stipulation is that the variables must match the parameter
list. If they are declared as globals and alterd by a procedure, then
all values to be passed to the procedure must be transferred to these
global variables. A second major difference is that in large
programs, it is often difficult to determine what routines are
changing specific variables. Sometimes accidental changes may occur
in global variables. These changes are often referred to as side
effects.

By adhering to the convention of passing the variables to a
procedure, it is easier to determine how procedures alter external
variables and to minimize unwanted side effects. Certainly, global
variables do have use in Pascal programs, but many new Pascal
programmers have a tendency to over use them.

Calling procedures

Procedures are called simply by referencing their name followed by
an argument list enclosed in parentheses. The list should be composed
of variables of the same type and order as declared in the procedure
declaration section.

- 35 -

Procedures and functions Chapter 8

Functions

Another block in Pascal similar to the procedure is the function.
Its internal structure is the same as the procedure with const, var
and type sections optional. The purpose of a function is similar to a
procedure. A procedure may stand alone as a statement, as the call to
"readn" illustrates in program 8.1 . A function may not stand alone.
It must be used in an expression, and may be used anywhere a variable
can be used. Consider the following program.

Listing 8.4

PROGRAM functiontest:
VAR

num:INTEGER:

FUNCTION ABS(number: INTEGER) : INTEGER:
BEGIN
IF (number < 0) THEN ABS:= - number

ELSE ABS:= number:
END:

BEGIN
num:= -30:
num := ABS (num):
WRITELN(' the absolute value of num = ',num):

END.

The result returned by the abs function is of the type integer.
The result must be used in an expression or assignment statement. It
is not valid to simply say abs (num) . The mechanism used to transfer
the functions calculated value back to the calling program is the use
of an assignment statement to assign the value to an identifier that
has the same name as the function name. This particular function is
already predefined in Pascal, and serves the same purpose as the
example.

- 36 -

Procedures and functions Chapter 8

Advanced program structure

Pascal is a block structured language. This means that a program
is constructed in a block like manner. At a m1n1mum, a program
consists of one block. More blocks are created through the use of
procedures and/or functions by placing them inside this outermost
"program block". The term for this process is called nesting. The
rule for nesting is that a block may lie entirely within another
block, but blocks do not overlap in any other way. A level of nesting
can be assigned to each block of a program. This provides an
appropriate tool for describing scope rules which are discussed later.
The block structured organization of a program can be represented
pictorially by the following diagram.

Diagram 8.1

Program Block (level 1)

Procedure Block (level 2)

Procedure Block (level 3)

Function Block (level 2)

Procedure Block (level 3)

Procedure Block (level 2)

A program then consists of at least one block, the program block,
and optionally it contains procedure and/or function blocks which are
nested within.

- 37 -

Procedures and functions Chapter 8

Local variables are those variables declared within the var section
of a particular procedure. Locals can be accessed from the body of
the procedure in which they are declared and from those procedures
declared within it. If a variable is used within a procedure and is
not declared local to it, then a global variable is used. Global
variables are those variables declared in an outer enclosing block.

Listing 8.2

PROGRAM globals;
VAR

i INTEGER;
b BOOLEAN;

PROCEDURE inner;
VAR

b : INTEGER;
BEGIN

b := i + 25;
i := i + l;

END;

BEGIN
i : = 0;
writeln(i);

END.

In the above program, the i in the procedure refers to the variable
i in the main program. Since the program "global" is arr enclosing
block to the procedure "inner", the variables declared within the
program are accessible to the procedure. In the case of the variable
"b", the var section of the procedure redeclares b to be an integer.
When bis referred to in the procedure inner, the local variable is
used. The declaration of bas a local variable "masks" the global
definition of b.

Scope rules

The rules of accessability of variables, types and constants are
referred to as scope. The scope of an identifier is the procedure in
which it is declared, and all procedures declared within that
procedure. All identifiers including types, constants, variables and
procedure declarations have scope.

- 38 -

Procedures and functions Chapter 8

If an identifier is redeclared within its scope, the outer
definition becomes inaccessible within the scope of the inner
definition. In the example above, the declaration of bas an integer
within the inner procedure causes all references to bin that
procedure to refer to the local variable. The outer definition of b
as a boolean cannot be seen.

Pascal requires that all identifiers be declared before they are
used. If the declaration of an identifier has not yet been
encountered in the text of a program, then the identifier is
considered undefined. A procedure can be called from the body of the
block declaring it, from the procedures declared within it and from
the procedures declared within the same block. However, if procedure
A is declared before procedure Bin the same block, then procedure B
can call A, but procedure A cannot call B. This is due to the fact
that the declaration of B has not been encountered in the source text
when the body of procedure A is being compiled.

The above visibility restriction can be avoided with the use of
forward declarations. In a forward declaration, the body of the
procedure is replaced with the word FORWARD. The actual body is then
supplied later. If all procedures within a block are declared
forward, then any one of them can call any other.

Listing 8.3

PROGRAM Outer;
VAR

i : INTEGER;
FUNCTION Distance(xl, x2 : INTEGER):INTEGER;FORWARD;
FUNCTION Abs(tvalue: INTEGER) : INTEGER; FORWARD;

FUNCTION Distance(*(xl, x2 : INTEGER) : INTEGER*);
BEGIN

distance :z abs(x2 - xl);
END;

FUNCTION Abs(*(tvalue : INTEGER) : INTEGER*);
BEGIN

if tvalue < 0 then abs:= -tvalue
else abs:= tvalue;

END;

BEGIN
WRITE('DISTANCE 2 ',Distance(8,2));

END.

- 39 -

Procedures and functions Chapter 8

If a procedure is declared forward, its parameter list is supplied
by the forward declaration. The body appears later in the text. The
body is introduced by the procedure name followed by a semicolon. The
parameter list is not repeated. Notice that in the example, the
parameter list is commented out by putting(**) around it. It is
good practice to include the parameter list of a forward procedure in
a comment. This makes the body of the procedure easier to read.

Tutorial Quiz 8.0

(1)---.-----and _____ promote modularity and
functionality in programs.

(2) Data is passed to procedures and functions through a
list.

(3) Blocks may be ___ within other blocks.

(4) Nesting affects the ____ of blocks.

CS> A block nested within an outer block may access the
outer blocks

(6) Parameters may be passed by value or

(7) When a variable is passed by
variable is passed.

, a copy of the

<8> When a variable is passed by reference the keyword
__ must precede it in the parameter list.

Answers:

Cl> Procedures, functions (2) parameter (3) nested

(4) level (5) identifiers (6) reference (7) value

(8) var

- 40 -

Chapter 9

ADVANCED DATA TYPES

Array data type

Another cousin to the data types already explained is the array.
Sometimes a large number of variables of a particular type are needed.
If for example you required seventy two variables of the type char to
represent a user's input character string from a file, you could
declare them as previously explained. The disadvantage is obvious, as
the effort would be time consuming. Furthermore, accessing the
individual variables would be confusing, as each would have a
different name.

There is a simple answer to this problem and it is the data type
array. You may declare a variable as:

or
variablename: array [1 •• n] of type:
variablename: array (.l •. n.) of type:

Note - In TRS-80 Pascal, (.maybe substituted for[, and .> for

where type is any previously defined data type and n is the number of
variables desired. For now we will concern ourselves with integer
dimensions. Integer dimensions may be any positive or negative
numbers such that the range of dimensions do not cause a storage
overflow. This is a machine dependent constraint that varies among
implementations . Thus we may declare:

VAR line: array (1 .• 72) of char:
varname:char:

To access a component of this array you would use a subscript
denoting the numerical element. An example assignment might be
varname :3 line[4]: . Varname would be set to the value of the fourth
element in the array line.

Any array may be declared with the word PACKED as a prefix. The
packed attribute tells the compiler to store the data elements as
efficiently as possible. In Standard Pascal, you may not pass
elements of packed structures by reference to procedures or functions,
and packed elements may not be used as arguments in READ statements.
In TRS-80 Pascal, there are no such restrictions.

- 41 -

Advanced data types

Arrays

listing 9.1

PROGRAM onedimarray;
VAR

stringl: PACKED ARRAY [1 •• 72) OF CHAR;
BEGIN

WRITELN('Enter command string');
READLN(INPUT,stringl);
WRITELN(OUTPUT,stringl);
WRITELN('Program complete');

END.

Chapter 9

If the I/O is directed to the terminal, the program will display
the prompt: •Enter command string• . At this point the user may type
up to seventy two characters of input, terminated with the return key.
The input characters will be input to the array "string!• left
justified. If the input character string is less than seventy two
characters in length, the remaining storage positions in the array
will contain blanks. At this point the input message will be echoed
to the terminal. In TRS-80 Pascal, an entire single dimension packed
or nonpacked array of char may be input/output by a single read/write.

Arrays in Pascal may have multiple dimensions. Suppose that you
had a number of input character strings as in the previous example,
and it was desired to store every character string. A simple answer
would be to declare the array line: array [1 .• 5,1 •. 72) of char; .
This declaration is a Pascal short form for the declaration of
array[l •• 5] of array[l •. 72]of char; .

If the data structure is a two dimensional array of char, then the
read command will not input the entire array automatically, but
instead requires that each individual sub-array be read in with a
separate read statement.

- 42 -

Advanced data types Chapter 9

Remembering that any single dimension array may be input by a
single READ statement, leads to the following example array input
sequence. Examine the following program.

listing 9.2

PROGRAM arrayIO;
VAR

: INTEGER; I
string! : ARRAY [1 .. 5,1 .. 72) OF CHAR;

BEGIN
FOR

END.

I:= 1 TO 5 DO
BEGIN
WRITELN(OUTPUT, 'Enter command
READLN(INPUT,stringl[I));
END;

line ' I I) ;

This program will prompt the user for five different command lines.
In each case, the individual sub arrays are loaded into the array by
the program.

Since individual array elements are of the type char, any
operations that can be performed on a simple variable, of type char,
may be performed on an array element. Remember also that arrays may
be of any type such as boolean, integer or any user defined data
types, including arrays. Arrays may have upper and lower bounds
declared as constants in the declaration, and in fact, the name of
most simple data types may be substituted for the bounds. The number
of array elements in this case is determined by the number of elements
in the data type.

- 43 -

Advanced data types Chapter 9

User defined data types

The data types explained so far have been pre-defined. In Pascal,
you may define new data types at will. These defined types have names
chosen by the programmer and are declared in the TYPE section. Once
declared, they may be used where predefined type names are allowed.
This is a very powerful feature . Take for example the case where a
programmer is manipulating an integer variable in Basic that may take
on one of four values, 1 .. 4. The numbers may represent the colors
red, green, blue and orange. When the value is 1 : a message is
written to the terminal saying that the color red is being processed,
2 : That the color green is being processed and so on. This is
typically known as decoding information from a variable's value.
Needless to say, when Basic programs get very long, it is difficult to
determine their flow because of this decoding and encoding of
information. A simpler way would be to declare a variable that could
take on the value of red, green, blue and orange. Then tests could be
performed to see if the value of the variable is red, etc. Program
logic would be much clearer and easier to follow. In fact, this is
exactly what the following program does.

listing 9.3

PROGRAM usertypes;
TYPE difcolor = (red, green, blue, orange);
VAR

color: difcolor;
BEGIN

color := red;
REPEAT

CASE color
red
green
blue
orange
END;

of
WRITELN(OUTPUT, 1

WRITELN(OUTPUT,'
WRITELN(OUTPUT,'
WRITELN(OUTPUT, 1

color := succ(color);
UNTIL(color= orange);

END.

- 44 -

The color is red');
The color is green');
The color is blue');
The color is orange');

Advanced data types Chapter 9

Enumerated user defined types

Program 9.3 illustrates an enumerated user defined type, "difcolor"
An enumerated type is where a list of possible variable values are
given in the type declaration. The predefined function, "succ" is
available in Pascal, and is a convenient way of incrementing a user
defined variable type to the next possible value. In a simple program
using an integer variable, this could be accomplished by adding one to
the variable, but this would not make sense with a user defined type.
User defined enumerated data types may not have their values written
out. Program 9.3 gives an example of how that may be accomplished.

Subrange types

A variable may assume a value that is in a sub- interval of some
other simple type. In this case, it may be declared to be a subrange
type. For example, integer may represent all whole numbers between
-32,768 and 32,767. In the type section, a subrange user defined type
might be declared to be byte= 0 .. 255; I.E.; any variable of the type
byte may take on the value from Oto 255. The same operations may be
performed on a subrange type that are applicable to the original type.
Also a subrange type may be the subrange of any user defined simple
type.

listing 9.4

Program subrange;
TYPE

baddate = 1900 .. 1903;
'A' •. 'Z'; uppercaseletters =

lowercaseletters = 'a' .. 'z';
= '0' .. '9';
= -100 .. 100:

VAR

digits
xaxis

testyear
upper letter
lower letter
digit

BEGIN
END.

baddate;
: uppercaseletters;

lowercaseletters;
: digits;

All of the above examples are valid subrange declarations. Named
subrange types are very helpful when a programmer wants to clearly
identify the data differences between specific variables to increase
readability. Also, the storage required for a subrange variable is
proportional to the interval it spans. This may be important when
building large data structures to be implemented on microcomputers.

- 45 -

Advanced data types Chapter 9

RECORD data types

So far, the only structured data type examined has been the array.
The array is an excellent mechanism for storing large amounts of data
of the same TYPE. For example, the series of text strings input from
the terminal were efficiently stored using arrays of CHAR, and any
individual character was easily accessible. However, it is often
desired to keep variables of different data types grouped together.
Take for example, a list of a business's customers along with vital
information about each customer. Suppose that you desired to keep the
following information about every customer:

Name
Customer category
Mailing address
Telephone number
Dollars spent in store
On catalog circulation list

This might represent a situation where the business would like to
keep a data base updated. In languages like Basic, the only way to
maintain this information would be multiple arrays containing encoded
information. This is not the case in Pascal, as you may build a
RECORD which can store all of the above information in a clear and
concise format. Furthermore, you may declare an array to be of this
user defined type.

Record data types

In Pascal, a RECORD is a predefined data structure which is
composed of component variables. These component fields may be
variables of any Pascal predefined, or user defined data types. The
purpose of a record is to group variable information into logical
entities, such that any particular component field may be operated on,
or the entire record may be referenced as a whole. The following is
an example of how the previous business record is declared in Pascal.

- 46 -

Advanced data types

Listing 9.5

PROGRAM database;
TYPE

custmrcategory = (business,individual);
custmrecord • RECORD

custmrtype custmrcategory;
address : PACKED ARRAY[l .. 72) OF CHAR;
telephone PACKED ARRAY[l .. 15) OF CHAR;
expenditures : REAL;
cataloglist : BOOLEAN;
END;

VAR
custmr
custmrlist
index

custmrecord;
: ARRAY[l •• 100) OF custmrecord;

: INTEGER;
ans : CHAR;

PROCEDURE custmrinp(VAR custmr:custmrecord);
VAR custyp: CHAR;
BEGIN

Chapter 9

WRITELN('* Enter customer type: (business/individual)');
READLN(custyp);
IF(custyp='I')THEN

custmr.custmrtype:=individual
ELSE custmr.custmrtype:sbusiness;
WRITELN('* Enter address:');
READLN(custmr.address);
WRITELN('* Enter telephone number:');
READLN(custmr.telephone);
WRITELN('* Enter expenditure in dollars:');
READLN(custmr.expenditures);
WRITELNC'* Want on catalog circulation list: (true/false)');
READLN(custmr.cataloglist);

END;
BEGIN

index:s0;
ans:•' N';
WRITELN('** BUSINESS XYZ CUSTOMER RECORD PROGRAM**');
WHILE Cans<> 'S') DO

END.

BEGIN
index:•index+l;
custmrinp(custmrlist[index]);
WRITELN('* MORE CUSTOMERS (STOP/CONTINUE)');
READLN (ans);
END;

- 47 -

Advanced data types Chapter 9

The outer shell that must enclose record type declarations is of
the form:

type name= RECORD
END;

The component field declarations reside between the RECORD and END; .
The field declarations are defined in the same way as the VAR section
of the program. In program 9.5, the user defined record name is
custmrecord. The component field declarations: custmrtype,
address, telephone, expenditures, and cataloglist are defined exactly
the same way as the program variables are in the VAR section. All
the field components belong to the data type custmrecord. Since
custmrecord is treated like any other user defined type, we may now
declare a variable to be of type custmrecord in the program VAR
section.

The difference between a record and other simple user defined data
types is that there are component fields in a record that are really
variables themselves. In example 9.5, the variable custmr is of a
record type. When referring to custmr in expressions, to reference
the entire record, you simply use the variable name, custmr. To
access the component field, expenditures, you would prefix
expenditures with the record variable name, custmr, separated with a
'·' character. Example:

custmr.expenditures:= 99.95;

If another record named excustomer had been declared, the following
would be a valid statement.

excustomer:=custmr;

In this case, all component fields in excustmr would be set to
the component fields in custmr. Variables of type record, and their
associated component fields, obey the same rules for use as all other
typed variables.

The purpose of program 9.5 is to perform record 1/0 utilizing the
predeclared text files input and output. Notice the read and write
statements utilize record component fields as arguments. Read and
write behave as though the component fields were variables declared in
the VAR section. As with other variables, 1/0 may not be performed to
a text file through a component field that is of a user defined
enumerated type.

- 48

Advanced data types Chapter 9

WITH statements

The use of records may often cause segments of the program that
reference them to become long and tedious, because every time a
component field is referenced, the record variable name must precede
it. Accessing component fields may be simplified by using the WITH
statement. Examine the following procedure, which could be included
in program 9.5.

Listing 9.6

PROCEDURE custmroutput(VAR custmr:custmrrecord);

BEGIN

END;

WRITELN('** CUSTOMER OUTPUT RECORD FOR BUSINESS XYY **');
WITH custmr DO

BEGIN
IF(custmrtype=business)then

WRITELN ('Customer type : Business'>
ELSE WRITELN('Customer type Individual');
WRITELN ('Address ',address);
WRITELN ('Telephone ',telephone);
WRITELN ('Expenditures ',expenditures);
WRITE ('Circulation list ');
IF (cataloglist)THEN WRITELN('Yes')
ELSE WRITELN('No');
END;

The action of the WITH statement is to eliminate the normally
required record variable name prefix when accessing component fields
of that record. The scope of the WITH is one statement, which in this
case is a compound statement.

- 49 -

Advanced data types Chapter 9

File of TYPE

INPUT and OUTPUT are examples of TEXT files in Pascal. These FILE
types have been used for all of the program examples so far. A TEXT
file is TRS-80 Pascal predeclared to be a special file of char, with
rules for performing I/O using INTEGER, REAL and BOOLEAN variables.
In TRS-80 Pascal, there are extensions to allow for performing I/O
using ARRAY variables in text files.

A FILE OF <any known type> may be declared in Pascal. Files of
types other than text are primarily used for storing data which will
be retrieved at some other time. For example, a FILE OF customerecord
could be defined in the type section. (customerecord as defined in
listing 9.5) A variable of type customerecord could be written to this
file. The important thing to remember is that an entire record may be
written (or read), by one I/O statement. Component fields of this
record may not be read or written individually to a file of records.
When I/O is performed with a FILE OF <any type except text>, no ASCII
encoding or decoding of information takes place . Instead, the binary
representation is used. This is not particularly useful when the I/O
is directed to a terminal, but is effective for storing large amounts
of information on disk media. The predeclared procedures WRITELN and
READLN are not valid when performing I/O with a file of any type
except TEXT, although read and write perform normally. The program in
the appendix of this manual utilizes a FILE OF custmrecord for storing
information in a data base. This is a typical use for a FILE OF TYPE.

- 50 -

Tutorial Quiz 9.0 Chapter 9

Cl) If a large number of variables of the same
TYPE need to be declared, the
may be the correct data structure to use.

(2) Arrays in Pascal may have more than
dimension.

(3) New user defined --- may be declared in
Pascal programs.

(4) An-~~-- TYPE is defined by a list of
identifiers given to be the different values
allowable for a variable.

(5) A _ __,,_ __ TYPE is any user defined TYPE
that 1s a sub-interval of another simple TYPE.

(6) A _______ TYPE is used to logically group
together data of different types.

Answers:

Cl) array (2) one (3) types (4) enumeration

(5) subrange (6) record

- 51 -

Chapter 10

DYNAMIC DATA TYPE

All of the variable types discussed so far have been "static" in
nature. This means that the size of data structures such as the array
have to be defined before the program is compiled or executed. In
program 9.5, the size of the array customer list has an upper bound of
100 entries. If more than 100 storage locations are needed to store
the customer records, the array declaration has to be changed in the
source program, and the source recompiled. In most popular
micro-minicomputer Pascal implementations today, there are limits to
the number of storage locations that may be declared in a program.
This limitation is usually proportional to the size of the program in
conjunction with the type and number of variable declarations. It is
usually impractical due to these memory restrictions to declare arrays
and other data structures to be larger than required. The static
nature of variable declarations often create problems in some
programming applications. Suppose for example, that in program 9.5 it
was desired to keep a list of sales transactions for each customer
attached to each customer record. This could be accomplished by
declaring a component field of each customer record as being an array
of transaction records. Then at any time you could access the sales
transaction of every customer. This would require that the number of
sales transactions per customer be limited to a preset number by the
array declaration. It might be feasible to limit the number of
customers to 100, but the number of transactions per customer might
vary. There is a mechanism in Pascal to allow for dynamic variable
allocation at program execution time. It is possible to request a new
storage location for a variable by calling the Pascal pre-defined
procedure NEW.

Procedure NEW

By calling the procedure NEW, it is possible to get a pointer to a
memory storage location that is the proper size for the argument
variable. It is important to remember that the same limitations on
the amount of memory available still apply, however dynamic allocation
of memory allows for better utilization of space. The variable used
as an argument for the NEW procedure call must have been declared in
the VAR section. It must be declared as a TYPE that is a pointer to
the actual data type. An example of a pointer data type declared in
the TYPE section is as follows:

- 52 -

Dynamic data type

Listing 10.1

TYPE

Chapter 10

trxptr = Atrxrec;

trxrec = RECORD
nexttrx: trxptr;
invoicenumber
date

VAR

transprice
partnumberlist
END;

trx trxptr;

INTEGER;
ARRAY (1 .. 10] OF CHAR;
REAL;
ARRAY [1. .10] OF CHAR;

In the example program segment, the variable trx is of type
trxptr. In the type section, trxptr is defined to be
a pointer to" trxrec" . The character" A "denotes a
pointer in Pascal. Therefore, the variable trx is a pointer
to a storage location in memory of the size required to store the
RECORD trxrec. This storage location may be requested anytime
during program execution as opposed to program startup. Pointer types
to large data structures may be declared in a program with minimum
memory space penalty until the procedure NEW is called during program
execution. Notice at the "Atrxrec" point in the type
declaration, trxrec has not been defined. In Pascal,
declaring a pointer to an as yet undefined type is valid.

The following program segment illustrates a few simple methods of
using pointer variable types.

- 53 -

Dynamic data type

Listing 10.2

PROGRAM dynamic;

Chapter 10

(* TYPE declaration section from listing 10.1 *)

VAR
trx
nexttrx:

BEGIN

trxptr;
trxptr;

NEW(trx);
trxA.invoicenumber:=2345;
trxA.transprice :=99 . 95;
nexttrx:=trx;
WRITELN('* Transaction invoicenumber:

trxA.invoicenumber);
WRITELNC'* Transaction price

trx.transprice);
DISPOSE(trx);

END.

If the pointer itself is being referenced, just the variable name is
used. In the example, the pointer variable nexttrx is set to
the value of trx. When referring to the contents of the
storage location, an" A" follows the variable name.
"trxA.transprice" refers to the value of the component field
stored at that location. These basics of pointer data type
manipulation are used to build "linked lists" • A linked list is a
chained list of dynamic storage areas.

Notice the procedure call to DISPOSE. The purpose of DISPOSE is to
release the storage area acquired in the NEW call. After the DISPOSE,
the data stored at the dynamic memory location is effectively lost.
This is an important feature of Pascal. Careful use of NEW and
DISPOSE can result in programs that dynamically grow and contract in
memory size as needed, and efficiently manage the computer resources.

LINKED LIST

A linked list is a programming technique that chains together a
series of variables. A thorough discussion of linked list processing
would entail several chapters, and is really a topic for a data
structures book. It will be covered briefly here because it is
integral to discussions about dynamic memory management.

- 54 -

Dynamic data type Chapter 10

In example 10.1, the data type trxrec has a component
field which is a pointer to a storage area of the same type as itself.
A pointer to another record node may be stored in this field. In the
record pointed to, a pointer to another record node could be stored,
and so on. In this way, a series of record nodes may be linked
together. The following diagram will help to visualize this list.

Listing 10.3

VAR
headnode: trxptr;

headnode
I
V --------------,,-----,--------------record number 1

trxrec = RECORD
nexttrx: trxptr;
invoicenumber
date
transprice
partnumberlist
END;

INTEGER;
ARRAY [1 .. 10] OF CHAR;
REAL;
ARRAY [1 .. 10] OF INTEGER;

record number 2
trxrec = RECORD

nexttrx: trxptr;
invoicenumber
date

INTEGER;
ARRAY [1 •• 10] OF CHAR;

transprice
partnumberlist
END;

: REAL;
ARRAY [1 .. 10] OF INTEGER;

record number 3
trxrec = RECORD

nexttrx: trxptr;
invoicenumber
date
transprice
partnumberlist
END;

INTEGER;
ARRAY [1 .. 10] OF CHAR;
REAL;
ARRAY [1 .. 10] OF INTEGER;

NIL<----------------------------

- 55 -

Dynamic data type Chapter 10

The variable headnode is a pointer variable declared in the VAR
section of the program. At some point in the program, a NEW procedure
call could be made with headnode as its argument. Headnode would now
be a pointer to the start of the list. Notice the word NIL at the end
of the list. NIL is a reserved word in Pascal. This simply sets the
pointer to an initialized value that may be tested for in looping
statements. A word of caution when using pointers in Pascal. If a
pointer variable has been declared, but not set to any value, there is
no guarantee of its value. It will not necessarily be set to NIL.
Most Pascal implementations do not perform a runtime check for
uninitialized values. Use of uninitialized pointers can lead to the
program writing over itself in memory with execution becoming
unpredictable. These kinds of programming errors will not show up at
compile time, and can be extremely hard to find during program
execution. The following segment illustrates how list 10.3 could be
built.

Listing 10.4

PROGRAM linkedlist(input,output);
TYPE

trxptr = Atrxrec;
textline = PACKED ARRAY (1 .. 10] OF CHAR;
trxrec = RECORD

nexttrx: trxptr;
invoicenumber :
date :
transprice
partnumberlist:
END;

INTEGER;
textline;
REAL;
textline;

VAR
headnode,transnode:trxptr;

I : INTEGER;
PROCEDURE readtrx(VAR trx:trxrec);

(* The purpose of this routine is to prompt the user for*)
(* the purchaser's trx record *)

BEGIN
WITH trx DO

BEGIN
WRITELN('ENTER INVOICE NUMBER:');
READLN(invoicenumber);
WRITELN('ENTER DATE:');
READLN(date);
WRITELN('ENTER TOTAL PURCHASE PRICE:');
READLN(transprice);
WRITELN('ENTER PARTNUMBER(S) SEPARATED BY COMMAS:');
READLN(partnumberlist);
END;

END; (* readtrx*)

- 56 -

Dynamic data type Chapter 10

Listing 10.5 (continuation 10.4)

PROCEDURE writetrx(VAR trx:trxrec);
(* The purpose of this routine is to write
(* trx entry

the purchaser*)
*)

VAR !:INTEGER;
BEGIN

WITH trx DO
BEGIN

END;

FOR I:= 1 TO 35 DO WRITE('*');
WRITELN;
WRITELN('INVOICE NUMBER
WRITELN('DATE
WRITELN('TOTAL PURCHASE PRICE
WRITELN('PART NUMBER LIST
FOR I:=l TO 35 DO WRITE('*');
WRITELN;
WRITELN;
END;
(*PROCEDURE writetrx*)

: ',invoicenumber);
: ',date);

',transprice:10);
',partnumberlist);

PROCEDURE listrxs(temptr: trxptr);
(* the purpose of this procedure is to traverse the linked*)
<* list attached to the argument pointer, writing the *)
(* values of the trx records *)
VAR

loctrx: trxrec;
BEGIN

(* traverse trx linked list,writing trxs *)
WHILE (temptr <> NIL) DO

BEGIN
(* load the contents of localtrx with the*)
(* contents of temptr *)

loctrx:=temptr-;
writetrx(loctrx);

(* set temptr to the next node in the linked list *)
temptr : 2 temptr-.nexttrx
END;

END; (* li stransactions*)

- 57 -

Dynamic data type Chapter 10

Listing 10.6 (continuation 10.5)

BEGIN (* begin main program linkedlist *)
(* initialize pointer that will always reflect the*>
(* beginning of the list. *)
(* this will set the end of the list to NIL during the first *)
(* pass through the FOR loop *)

headnode := NIL:
(* read 3 trxs and link each new one to the beginning*)
(* of the list *)

FOR I :z 1 to 3 DO
BEGIN
NEW(transnode):

(* insert the newnode in front of the old headnode *)
C* link to the old headnode *)

transnode-.nexttrx := headnode:
(* make the newnode the new headnode *)

headnode :: transnode:
C* load the actual data into the fields of the new node*)

readtrx(transnode->:
END:
(* list all trxs entered*)

listrxs(headnode):
END. (*main program*)

- 58 -

Chapter 11

Sets

Sets in Pascal have the same meaning as they do in the normal
mathematical sense. If a group of objects are declared in set A, and
a group of objects are declared in set B, a number of operations may
be performed on these sets such as

(1) Membership and relational testing
(2) Set arithmetic (union,intersection,difference)

In the case of Pascal, the objects are simply data values. These
data values may be Pascal predefined or user defined . An example
would be a SET OF CHAR, or a SET OF digits where digits is a user
defined subrange type of CHAR. Testing could be performed to see if
the SET OF digits is in the SET OF CHAR if desired. The method of
declaring set variables is:

VAR A,B: SET OF <type> ;

This means that A and B may contain from one to all of the data
values declared by the type, however its membership is undefined until
it is initialized like any other variable. In the body of the
program, a set may be initialized to empty by:

A:=[];

Membership testing

Once the set variables are initialized, a series of BOOLEAN
relational tests may be performed . The relational operators are as
follows:

setl = set2

setl <= set2

setl >= set2

Set equality- If (all members of first
set are in the second set and all
members of second set are in the
first set) : returns true.

Subset- If (all members of first set
are in the second set) : returns true.

Superset- If Call members of second set
are in the first set) :returns true.

- 59 -

Sets Chapter 11

setl <> set2 Set inequality- If all members of first
set are in second set, and all members
of second set are in first set
returns false.

Individual element membership may be tested by using the IN
operator. If a variable had been declared of the same type as the
base set type, the IN operator may be used to check for set
membership. An example would be:

Listing 12.1

TYPE
DIGITS= '0' •. '9';

VAR
DIGIT
D

BEGIN
D:='a';

SET OF DIGITS;
CHAR;

DIG! T: = ['0 ' • . '9 ' 1 ;
IF(D IN DIGIT)THEN DO (*action*);
IF(D='0')OR(D='l')OR(D='2')OR(D='3')OR(D='4')OR(D='5')

ORCD='6')ORCD='7')OR(D='8')ORCD='9') THEN DO (*ACTION*)

The two IF statements in the above program segment are equivalent.
Notice that the equivalent IF statement using sets is a more concise
and readable statement. This represents a simple use for sets for the
average programmer.

Set arithmetic

There are three set operators in Pascal. Each requires two
arguments. Arguments should be sets of the same base type, and the
result will be of the same type. The operators are:

A + B

A * B

A - B

Gives the union of A and B

Gives the intersection of A and B

Gives the difference of A and B.

- 60 -

Sets Chapter 11

The following segment program illustrates set operator use.

LISTING 12.2

PROGRAM TESTSET:
VAR

DIGITS,LETTERS,LOWERCASE,UPPERCASE
ALPHANUMERIC,ALPHA
D: CHAR:

BEGIN
D:='l':
DIGITS:=['0' •• '9 • 1:
LOWERCASE:=['a' .. 'z']:
UPPERCASE:=['A' •. 'Z']:
LETTERS:=LOWERCASE + UPPERCASE:
ALPHANUMERIC:=LETTERS + DIGITS:
ALPHA:=ALPHANUMERIC - DIGITS:

SET OF CHAR:
SET OF CHAR:

IF (DIN ALPHANUMERIC* DIGITS) THEN
WRITELNC'PUNT'):

END.

- 61 -

Appendix

On diskette there is a file named DATABASE/PCL. This source program
ties all of the previous program segments in chapters 9 and 10
together, to build a program that will build a data base for
business customers. This is not intended to be a comprehensive
program, but can serve as a starting point for an expansion. This
program requires approximately 15K of stack to RUN or execute.
Once compiled, it may be executed by typing:

RUN DATABASE 15K

The number of customers allowed in the data base array is set by
the constant •maxarray• , and may be changed to reflect local memory
restrictions. Customer transactions are linked to each customer
record by dynamic management of linked lists. Customer records are
kept on a separate file from the transactions in order to simplify
rebuilding of the linked lists when loading an existing data base.
The size of the data base accessible during a program invocation is
limited by the available memory, as the entire data base is loaded
into memory for operations. Large data bases may be accessed by
partitioning the data base between files and running the program
multiple times.

- 62 -

Language

Reference

LANGUAGE REFERENCE MANUAL

TABLE OF CONTENTS

Notation and Terminology ••..•.••.••.•••.•••...•.•....•••••. 5

Chapter 1

Program Elements.
A.
B.
c.
D.
E.
F.
G.

Identifiers.
Numbers •.•..
Strings •.••••
Reserved Words.
Special Symbols.
Com.men ts • •••••••••••••••••
The Semicolon ..••...•••••.

Chapter 2

Program Structure •••.•.••..
A. Block Headings •••••••.

1. PROGRAM Heading ••••

.

• ... • . 7
• ••••••••••• 7

.8
. •.. 9
• ••• 9

. 10
. 10

. 11

........ 12
. ••• 13

. 13
2. PROCEDURE Heading••• • ••• 13
3. FUNCTION Heading ..

B. Block Parts •••••.••••..•
1. LABEL Declarations ••
2. CONSTant Definitions.

• •••• • 1 S
............... 16

. 17
. 18

3. TYPE Definitions •••..••••••• . .19
4. VARiable Declarations •.•••. 20
5. COMMON Declarations .••• . •... 20
6. ACCESS Declarations ...
7. PROCEDURE and FUNCTION Declarations.

.21
..22

8. Statement Body • •••••.••••••••..•••••• • ••••••• 2 3

Chapter 3

Simple Data Types •.••••. •. 24
A. Ordinal Types •.•• • ••••• 2 4

1. INTEGER.
2. CHAR • ••••••••••••••••••

• ••••• 2 4
• ••••••••• 2 5

3. BOOLEAN
4. Enumeration ••••••••
5. Subrange.

. • •••••••••• 2 5
• . • • . • • . . • • • • • 2 6

.27
B. REAL Type • ••••• 27

Chapter 4

Structured Data Types•...... 28
A. ARRAY •• 28
B. SET ••.• 29
C. FILE

1. Predefined Type TEXT.
• •••••.••••••••• 3 2

. ••••••••••••••••••••••• 3 3
D. RECORD • ••••••••••••••••••••••••••••••• . .. 34

1

Chapter 5

Pointer Data Type •••••••.••••••.•••.••••••.••..•••...•• 40

Chapter 6

Operators. 4 4
A. Arithmetic •. 4 4
B. Relational •. 45 c. Boolean ••••• • ••••• 4 6
D. Precedence •. 47
E. Type Transfer. 48

Chapter 7

Expressions•.•..•••.•...............•...... ...•.•.. 49

Chapter 8

Statements.
A.
B.
c.

D.

E.
F.

Assignment.
Compound ..••••••••
Repetitive ••

1. FOR .••
2. WHILE •••• • ••••
3. REPEAT ••

Conditional.
1. IF •••
2. CASE.

WITH ••• • •••

.

.

••• 5 3
• ••••• 5 4

. ...•.. 55
• •••••••••.••••• 5 5

• •• 56
. •••.••••.•••.••• 5 7

. ••.•••• 5 7
. ... 58

• •• 58
. ••••• 6 0

..61
• •• 6 3

G.
GOTO •.••.•
Procedure. • •• 6 3

Chapter 9

Procedures and Functions.
A.
B.
c.
D.
E.

Scope Rules •.•••
FORWARD •.•
EXTERNAL ••
Recursion.
Predeclared.

2

• ••..••••• 6 5
•••..••••••••• 6 6

.68 69
• • • • • • • • • • • • • • 71

.72

Chapter 10

Input and Output ••
A.
B.
c.
D.
E.
F.
G.
H.
I.

RESET •• •
REWRITE.
READ ••
WRITE.
READLN .
WRITELN • •••••••••• ••• •••••••• •• ••••••••
CLOSE •••
PAGE • •••••••••••
MESSAGE.

Appendix
A. Compiler Options •.
B.
c.
D.

E.
F.
G.
H.
I.

Error Messages ••.
ASCII Character Set.
Differences from Standard.
1. Omissions
2.
3.

Extensions ••.• •• • • ••••.•
Other Implementation Characteristics .

Strings
Get and Put
using files
using global
Using common

I/O procedures ••.•.. • .••.
in structured
variables in

variables.
externals.

variables

3

•• 76
.77
.78

• •••• 79
. •... 81

. . 84
. •. 85

• ••••• 8 6
• •• 87
• •• 8 7

•••• 88
.88

• •• 98
• .102

• ••• 10 5
.105

• ••• 105
. .107
• .108

.112

. 115

. 118
• .119

FOREWORD

This manual assumes that the reader is already somewhat familiar with
the Pascal language. It is organized to be used as a reference
manual. As such, the chapters group related topics in order to make
them easier to find. The result of this is that the manual does not
follow a progression of discussion which is well suited as a teacher
of the Pascal language. It is suggested that you first read the
Pascal Tutorial if this is your first experience with the language.

- 4 -

NOTATION AND TERMINOLOGY

The description of any programming language involves both the syntax
and the semantics of the language. The syntax refers to the
arrangement of program elements into a form which the compiler can
understand. The semantics refers to the meaning that the compiler
associates with a particular arrangement of the program elements . The
semantics of a language can be explained with words but the syntax is
best explained through the use of diagrams.

The syntax diagrams used throughout this manual describe the legal
syntax of a program. Each diagram has an entering and an exiting
point which is denoted by an arrow. Starting with the arrow entering
a diagram, the legal syntax can be determined by tracing a path which
follows the directions indicated by the arrows until the exiting arrow
is reached. Most diagrams have a multiple number of paths from
starting point to ending point. All paths describe a syntactically
correct form.

The following are sample syntax diagrams which describe the syntax
of an integer.

Syntax of an integer: Syntax of a digit:

--> -

--, + --l ❖----------1
--------------->digit--->

--> 0

--> 1

--> 2

--> 3

--> 4

--> 5

--> 6

--> 7

--> 8
V

------> 9 ------>

- 5 -

The syntax diagram for an integer says that an integer is a
concatenation of one or more digits which is optionally preceded by a
plus or minus sign. Entering the diagram, you have 3 possible paths
from which to choose. One path leads directly to "digit", one leads
to"+", and one leads to"-". The paths from both"+" and"-" then
lead to "digit". Passing through "digit", you have the option of
exiting the diagram or following the arrow which leads back to the
beginning of "digit". From this point, you pass through digit again
and optionally exit or return for another pass. Thus, an integer may
consist of one or more digits.

The second syntax diagram describes the correct forms of a digit.
Entering the diagram, you have ten possible paths from which to
choose. All paths lead to a single character, each of which is a
legal digit. Choosing a path, you follow it through a character and
end up at the exiting arrow. At this point, there is no alternative
but to exit the diagram. No other paths are available. Some examples
of integers then are 10, +963, and -75.

In the diagrams used in this manual, upper case character strings
denote reserved words that must be present in the form shown. Lower
case character strings denote the parts of the syntax where many legal
forms exist. For example, the word integer in a diagram in lower case
letters represents any legal integer. The word INTEGER in uppercase
letters represents a reserved word of the language.

In some cases, abbreviations are used to shorten a diagram. For
example, id is used in place of identifier. Also, expr is used in
place of expression. A few other abbreviations may occur but where
used, their meaning should be apparent from the surrounding text.

- 6 -

Program Elements Chapter 1

PROGRAM ELEMENTS

The elements of a program consist of the entities (identifiers,
numbers, strings, reserved words, and special symbols) which are
composed from a character set. The ASCII character set is the most
often used and is listed in the appendix.

A. Identifiers

An identifier serves to denote the program name, a constant, a type,
a variable, a procedure, or a function. It consists of a letter
followed by combinations of zero or more of the following characters:

(the 26 letters of the alphabet in lower or upper case,
the digits O through 9, the character$, the character).

Note:
no distinction is made between upper and lower case letters
in identifiers. The two identifiers, Apple and apple, are
considered identical.

The length of an identifier is arbitrary but only the first 8
characters are significant. For example, the identifiers A2345678 and
A23456789 would to the compiler be identical because it discards all
characters past the eighth character. Therefore, care should be taken
to make identifiers eight characters unique. It should also be noted
that an identifier cannot contain embedded blanks or span a line
boundary.

Examples: Factor$ DEPARTMENT A Div 10 B12345678$_

- 7 -

Program Elements Chapter l

B. Numbers

Numbers are integer or real constants. Integers are allocated
sixteen bits of storage which imposes a size limitation. The range
for an integer is -32768 to +32767.

Syntax of integer numbers:

--> -

--> + ---1
V V

--------------------> digit--->

Examples of integer numbers:

30 -28934 0 32739

Real numbers are represented in either exponential or fixed point
form. The fixed point form consists of an integer part followed by
a decimal point and a fractional part. The exponential form consists
of a fixed point part followed by an exponent part. The exponent
part is a multiplier. The value of a real number in exponential form
is the fixed point part times (10 raised to the exponent part).
(See the System Implementation Manual for the size, range, and
accuracy of real numbers).

Syntax of real numbers:

I I
V V

-->integer--->. ---> digit ----------> E ---->integer--->

I
Examples of real numbers: --> D

Fixed point form:

50.0 -100000.0 345.22452

Exponential form:

0.239E3 -4.5921E-2 876.0E+33

0.239E3 is equivalent to 239.0
-4.5921E-2 is equivalent to -0.045921

193.27D-3

NOTE: Using D instead of E in exponential form represents
a double precision real number.

- 8 -

Program Elements Chapter 1

C. Strings

Strings are sequences of characters enclosed by single quote marks.
A string consisting of a single character is a constant of the type
CHAR. Strings consisting of n characters, where n is greater than
one, are constants of the type PACKED ARRAY[l • • n] OF CHAR. If a
string is to contain a single quote mark, it must appear twice in the
sequence.

Examples: 'ABC' '12"QZW' 'BEGIN I I*** I I % I

The string consisting of the single character' is represented as
I I I I .

Characters in strings can also be denoted by hexadecimal numbers.
A hexadecimal number is composed from the characters O through 9 and A
through F. (See the ASCII character set in the appendix). The
character t followed by 2 hexadecimal characters represents a single
ascii character. The character represented is the one whose ordinal
position in the character set corresponds to the hexadecimal number
specified. This feature provides a mechanism for representing
nonprintable characters. A consequence of giving the character I a
special meaning is that it must appear twice in a string just as the
character' must when the character itself is to be made a part of the
string. A string consisting of the single character I then is
represented by 'It'.

Examples of hexadecimal character representation in strings:

is equivalent to '0'
is equivalent to 'DOG'

'130'
'Dl4FG'
'100'
'AIB'

corresponds to the nonprintable null character
is illegal

D. Reserved Words

The following list of words are keywords and have special meaning in
a program. They may not be used as identifiers.

AND DOWNTO IF OR THEN
ARRAY ELSE IN PACKED TO
BEGIN END LABEL PROCEDURE TYPE
CASE FILE MOD PROGRAM UNTIL
CONST FOR NIL RECORD VAR
DIV FUNCTION NOT REPEAT WHILE
DO GOTO OF SET WITH

- 9 -

Program Elements Chapter 1

E. Special Symbols

The special symbols are used as operators and delimiters in a
program. Because character sets vary from system to system, alternate
representations are provided for some of the symbols.

Symbols with only one representation:

+ * I ,. <> < <•)a >
() := . , . : I : : ,

Symbols with alternate representations:

symbol
{
} ...
(
1

F. Comments

alternate
(*
*)
@
(.
.)

Comments can be used in a program for documentation purposes. The
compiler generates no code for comments. The symbol { denotes the
beginning of a comment while the symbol} denotes the end. All
characters in between are ignored by the compiler. As shown above,
the symbol {maybe replaced by the symbol(* and the symbol} may be
replaced by the symbol*).

Examples: {this is a comment}
<*This is a comment

that spans more than one line*)

Note: Comments may not be nested. The following will generate
an error:

(*outer (*inner level*) level*)

- 10 -

Program Elements Chapter 1

G. The Semicolon

The semicolon is used extensively in the Pascal language. Its
purpose is to separate the individual components of a program. For
example, block headings must be separated from block parts, block
parts must be separated from one another, and individual definitions,
declarations, and statements within the block parts must be separated.
In general, they may be used freely throughout the program. However,
care should be taken not to include a semicolon in the middle of a
statement. This is a common source for error when using the IF
statement with one or more ELSE clauses. Since the ELSE clauses are a
part of the IF statement, they must not be separated from it by a
semicolon. An ELSE keyword should never be preceded by a semicolon.

example use of semicolons in an IF statement:

IF time
BEGIN

> 12 THEN

alpha : = 'e' ;
beta : = If I ;

END (*semicolon here would cause an error*)
ELSE

BEGIN
alpha:= 'g';
beta := 'h';
END;

- 11 -

Program Structure Chapter 2

PROGRAM STRUCTURE

Pascal is a block structured language. This means that a program is
constructed in a block like manner. At a minimum, a program consists
of one block. More blocks are created through the use of procedures
and/or functions by placing them inside this outermost •program
block•. The term for this process is called nesting. The rule for
nesting is that a block may lie entirely within another block, but
blocks do not overlap in any other way. A level of nesting can be
assigned to each block of a program. This provides an appropriate
tool for describing scope rules which are discussed in chapter 9. The
block structured organization of a program can be represented
pictorially by the following example :

Program Block A cieveI 1)

Procedure Block B (level 2)

Procedure Block C(level 3)

Function Block D (level 2)

Procedure Block E(level 3)

Procedure Block F (level 2)

A program then consists of at least one block, the program block, and
optionally it contains procedure and/or function blocks which are
nested within.

- 12 -

Program Structure Chapter 2

A. Block Headings

The purpose of the block heading is to give the block a name and in
the case of procedure or function blocks, to define any parameters to
be passed to the block. There are three types of blocks: the program
block, the procedure block, and the function block. There is only one
program block, the outermost block of the program, while there may be
any number of procedure and function blocks. Each of the three types
of blocks has a different heading. (Procedures and functions are
discussed further in chapter 9)

A.l The Program Heading

The program heading must be the first non-comment in a program. Its
purpose is to signal the start of the program and to give the program
a name. Characters inside the parentheses are ignored by the
compiler.

Syntax of the program heading:

I
V

--> PROGRAM -->id---> (-->comments-->)--->; -->

Example program headings:

PROGRAM lander; PROGRAM taxes(computes income tax);

A.2 The Procedure Heading

The procedure heading signals the start of a procedure block. It
gives the procedure a name and defines the parameters to be passed to
it.

Syntax of the procedure heading is:

I
V

-->PROCEDURE--> id---> parameter list --->; -->

- 13 -

Program Structure Chapter 2

The parameter list declares the variables which are used to pass data
into and out of a procedure. The variables are called formal
parameters. The procedure statement which activates (or calls) a
procedure has a corresponding list of parameters which are the actual
parameters. The actual parameters must match the formal parameters in
order and in type. However, their names need not be the same.

There are two different kinds of formal parameters, pass by value
or pass by reference. A formal pass by value parameter causes its
corresponding actual parameter to be copied to another location and
then the formal parameter references the copied value. Therefore,
changing the value of the formal parameter inside the procedure does
not change the value of the corresponding actual parameter. In
contrast, a formal pass by reference parameter is passed the address
of the corresponding actual parameter. The formal parameter
references the same location as the actual parameter. Therefore,
changing the value of the formal parameter also causes the value of
the actual parameter to be changed. Variable declarations in the
parameter list which are preceded by the keyword VAR are pass by
reference parameters while the absence of the keyword represents pass
by value.

Syntax of the parameter list is:

--------------------; <--------------------
,

V l V i
--> (------->VAR-------> id------->:--> type id------->) -->

Example procedure headings:

PROCEDURE out;

PROCEDURE cpu(pc: INTEGER);

PROCEDURE delete(VAR i,j :INTEGER; ch :CHAR; VAR X :REAL);

In procedure delete above, i and j are integers which are passed by
reference, ch is a character which is passed by value, and xis a real
which is passed by reference.

- 14 -

Program Structure Chapter 2

As a general rule, pass by value parameters should be used to prevent
side affects. However, sometimes side affects are necessary. That
is, sometimes you need a change in the value of a formal parameter to
also change the value of its corresponding actual parameter. In such
a case, pass by reference must be used. Also, when passing large data
structures such as arrays, pass by reference should be used. This
speeds execution and saves memory because a pointer to the structure
is passed rather than copying the whole structure to another location.

A.3 The Function Heading

The function heading signals the start of a function block. It gives
the function a name and defines the parameters to be passed to it.
Unlike a procedure, a function has a type associated with it.
Functions, like variables, are assigned values. A function is
referenced by an expression and its value then substituted into the
expression.

Syntax of the function heading:

I
V

-->FUNCTION--> id---> parameter list--->: --> type id-->;-->

The parameter list has the same form as the parameter list for a
procedure discussed on the previous page.

Example function headings:

FUNCTION number: REAL;

FUNCTION nextstate(currentstate INTEGER) INTEGER;

The function "number" is a real valued function which has no
parameters. The function "nextstate" is an integer valued function
which has one parameter, also of type INTEGER. In each function, a
value should be assigned to the function name. For example,
number:=5.3 and nextstate:=currentstate + 1 could appear inside each
of the respective functions to define values for them.

Note: a function may be an ordinal type or the type REAL only.

- 15 -

Program Structure Chapter 2

B. Block Parts

A Block is composed from the following list of parts.

1. the label declarations
2. the constant definitions
3. the type definitions
4. the variable declarations
5. the common declarations
6. the access declarations
7. the procedure and function declarations
8. the statement body

The label declarations are used to declare statement labels which can
be used for branching. The constant definitions are used to give
names to numbers or strings which are constants. Constant names are
assigned values at compile time. Type definitions are used to create
and give names to data types which are not predefined. Variable
declarations are used to associate variable names to specific data
types. A type defines the kind of data that can be stored in a
variable. It also defines the amount of storage required for the
variable. Variables are assigned values at run time. Common
declarations are used in the same manner as the variable declarations
to associate variable names to specific data types, but common
variables have a special property. Storage space for common variables
is created statically rather than dynamically. This means that when a
block terminates, the common variables declared in it do not become
undefined. Access declarations are used to enable a block to access a
common variable. Procedures and functions are used for modularity.
They provide the mechanism for segmenting a block into subblocks. The
statement body contains the program statements which describe the
actions to be taken on data as well as the order in which the actions
take place.

A block does not have to include all eight parts described above.
At a minimum, a block must include the two keywords BEGIN and END
which bracket the statement body. The following is an example of a
minimum complete program. It contains only the program block which is
composed of only the heading and a null statement body.

PROGRAM donothing;
BEGIN (*The statement body contains no statements*)
END.

- 16 -

Program Structure Chapter 2

The order in which the eight parts appear in a block is as follows:
The first six parts may be arranged in any order. The only
requirement is that an identifier be defined before it is used. For
example, a particular type definition must textually precede a
variable declaration of that type. The only exception to this is the
definition of pointer types which are discussed in chapter 5. It is
also worth noting that there may be more than one of a particular
part. For example, there could be two separate type definition parts.
The procedure and function declarations follow any use of the first
six parts. The statement body then follows the last procedure or
function declaration.

B.l The Label Declarations

Label declarations are used in conjunction with the GOTO statement.
A label declaration defines a label which can then be used to label a
statement. A GOTO statement can then reference the label causing a
branch to the statement which is prefixed by the corresponding label.
The label declaration part is signaled by the keyword LABEL.

Syntax of the label declaration part:

--------- I (--------

t I
-->LABEL---> integer constant--->;-->

Note:
A label must be declared in the same block in
which a GOTO statement which references it
appears . Branching outside a block is not
allowed. Also, all declared labels must appear
somewhere in the statement body.

Example label declaration part:

LABEL 100, 200, 300, 400, 500, 1000;

Syntax of labeled statement:

--->label-->: -->statement--->

Example labeled statements:

100: x:=47;
200: IF x > 500 THEN GOTO 100;

- 17 -

Program Structure Chapter 2

B.2 The Constant Definitions

The constant definitions are used to associate identifiers with
values which do not change. A constant identifier is assigned a value
at compile time and this value can not be changed. This means that a
constant identifier cannot have its value changed by an assignment
statement. The use of constant identifiers increases program
readability because meaningful names can be used in the place of
actual values. The values which can be assigned to constant
identifiers are numbers, strings, or other identifiers which are
constants. This includes identifiers which are members of an
enumeration. The start of the constant definition part is signaled by
the keyword CONST.

Syntax of the constant definition part:

i <----------
I
V

-->CONST---> id-->=

'
-->constant--->; -->

Example constant definition part:

CONST low=32; high=88; pi=3.14159;
speedoflight=299792.0; separator='---------';
positive=l0; negative=-positive;
keydefinition=#61;

Note: Integer constants may also be expressed in
hexadecimal by preceding the value with the t

There is a predefined constant MAXINT which
is defined to be equal to the largest positive
value an integer can take.

- 18 -

Program Structure Chapter 2

B.3 The Type Definitions

Type definitions are used to create new data types. A type
definition associates a name with a user defined simple or structured
data type. The name can then be used in a variable declaration to
specify the type of the variable. Although a variable can declare its
type directly in the variable declaration part, it is nice and
sometimes necessary to have a name associated with a user defined
type. Type definitions are especially useful when using structured
types whose definitions are long and when more than one variable in
the program is to be declared of that type. Associating a name to the
type means that the type must be defined only once. In some cases,
type definitions are necessary. If comparisons are to be made between
two variables of a user defined type, then the variables must be
declared as the same type. Defining the type for each variable
separately in a variable declaration part will not work. Although the
variable declarations will look the same, the compiler will view them
as variables of two separate types. Also, declarations of variables
in the parameter list of a procedure or function must be to named
types. For example, if an array is to be passed as a parameter, the
array must be defined in a type definition and then the formal
parameter declared as that type.

The type definitions part is signaled by the keyword TYPE.

Syntax of the type definition part:

; <---------
I
V

-->TYPE---> id-->=

'
-->type--->; -->

Example type definition part:

TYPE colors= (red,blue,green,orange,purple);
weekdays= (sunday,monday,tuesday,wednesday,

thursday,friday,saturday);
workdays= monday •• friday;
daysofmonth = 1 •• 31;
letters= 'A' •• 'Z';
list 2 ARRAY (0 •. 25) OF CHAR;
customer= RECORD

name
address
END;

PACKED ARRAY[l •• 20) OF CHAR;
PACKED ARRAY[l •• 40) OF CHAR;

- 19 -

Program Structure Chapter 2

B.4 Variable Declarations

All variables in a program must be declared before they are used.
This is done by associating the variable name with a type. The type
can be the name of a predefined simple data type, the name of a user
defined type which has previously been defined in a type definition
part, or the type can be defined directly. The start of the variable
declaration part is signaled with the keyword VAR.

Syntax of the variable declaration part:

------------; <------------
, <--

I
V V 1

-->VAR------> id----->: -->type--->;

Example variable declaration part:

VAR x,y,z
ok
i, j ,k
fruit
alpha,beta
characters
mark

REAL;
BOOLEAN;
INTEGER;
colors;

: CHAR;
: list;
: ARRAY (1 •. 30] OF INTEGER;
: o .. 255;

-->

byte
months (jan,feb,mar,apr,may,jun,jul,

account

B.5 Common Declarations

aug,sep,oct,nov,dec);
RECORD
number, date: INTEGER;
END;

The common declaration part is used in the same manner as the
variable declaration part to associate a variable name with a specific
data type. However, declaring a variable in the common declaration
part gives it a special property. Normally, storage space for
variables is allocated dynamically. This means that the variables
declared in a block are allocated storage space when the block is
activated and the space is freed when the block terminates.
Therefore, the local variables of a block become undefined when the
block terminates. In contrast, aommon variables are allocated storage
space statically at compile time. This means that the common
variables of a block retain their defined values even after the block
terminates.

- 20 -

Program Structure Chapter 2

Common variables are scoped similar to normal variables.
However, only one storage location is reserved for each common
variable name. Therefore, a common variable declared locally
within a procedure will reference the same location as a common
variable of the same name declared anywhere else in a program.

A common variable cannot be accessed in a block unless its name
appears in an access declaration of the same block. This feature
is useful for controlling access to global variables, providing
protection and better documentation of where global variables are
used. Another very valuable use for common variables is in
external procedures. A procedure which is often used by many
separate programs can be compiled separately and linked to the
programs that use it. In the case where the procedure must retain
information between activations, such as cursor position in a
graphics procedure, common variables may be used to prevent the
need for global variables.

Syntax of the common declaration part:

-----------; <-------------
, <--

I
V V 1

-->COMMON-----> id-----> : --->type--->; --->

Example common declaration part:

COMMON cursorx, cursory : INTEGER;

(see the appendix for an example using commons)

B.6 Access Declarations

Access declar~tions are used in conjunction with common variables.
No common variable can be referenced unless its name appears in an
access declaration of the block which references it. The order in
which common variable names appear in an access declaration is
arbitrary.

Syntax of the access declarations part:

I
V

, <--

1
-->ACCESS------> id------>; --->

Example access declaration part:

ACCESS cursorx, cursory;

- 21 -

Program Structure Chapter 2

B.7 Procedure and Function Declarations

Procedure and function declarations create new blocks. Each
declaration forms a complete new block composed from the block parts
discussed earlier. A procedure declaration consists of a procedure
heading followed by a block. A function declaration consists of a
function heading followed by a block. Procedure and function
declarations form subblocks within the block in which they appear.
Procedure and function declarations are discussed more fully in
chapter 9.

Syntax of procedure or function declaration:

-->

I
function heading

I
V

-----> procedure heading----> block--->

Example procedure declaration:

PROCEDURE getvalue(first,last :INTEGER; VAR word: buffer;
VAR value: INTEGER);

(*Converts hex character string to decimal value:
buffer is a globally declared type--> PACKED ARRAY[l •. 8] OF CHAR;
word contains the hex character string
first and last are pointers into the string
value is the returned decimal value *)

VAR i,n,factor
ch

BEGIN

INTEGER;
: CHAR;

value:= 0; factor:= l;
FOR i := last DOWNTO first DO

BEGIN
ch:= word[i];
IF ch= ' 'THEN n:=0
ELSE

(*Blank character given value 0*)

IF (ch>='0') AND (ch~='9') THEN
n := ORD(ch)-ORD('0')

ELSE

(*character range 0 •. 9 *)
(*convert ch to decimal*)

IF (ch>='A') AND (ch<='F') THEN (*character range A .. F *)
n := ORD(ch) - ORDC'A') + 10; (*convert ch to decimal*)

END;

value:= value+ factor* n;
factor:= 16 * factor;
END;

- 22 -

(*hex is base 16*)

(*procedure getvalue*)

Program Structure Chapter 2

Example function declaration:

FUNCTION nextstate(currentstate: INTEGER) : INTEGER;
(* returns the next state given the current state*)

BEGIN
CASE currentstate OF

1: next state := 3;
2: next state := 4;
3: nextstate := l;
4 : next state := 2;

END;
END; (*function nextstate*)

B.8 Statement Body

The statement body of a block contains zero or more statements which
describe the actions of the block. The statement body must start with
the keyword BEGIN and stop with the keyword END. However, since
statements may also include BEGIN and END, the statement body may
contain many occurrences of these two keywords. The statement bodies
for the three types of blocks are identical, except that the
concluding END for the program block statement body must be followed
by a -period while the concluding END for procedure and function
statement bodies must be followed by a semicolon.

Syntax of statement body: -->;
I

V I
--->BEGIN--> statements--> END---->. ----->

Example statement body:

BEGIN C* begin program block statement body*>
WHILE NOT EOF DO

BEGIN
READ(x,y,z);
X : = SQR(x); y := SQR(y); i := SQR(z);
WRITE('squaredata' , x, y, z);
END;

END. <* end of program*>

- 23 -

Simple Data Types Chapter 3

SIMPLE DATA TYPES

The simple data types are the primitive data types of the language .
They form the base for building structured types. The simple data
types consist of ordinal types and the REAL type.

A. Ordinal Types

Ordinal types are characterized by a linear ordered set of distinct
values which can be mapped on the set of natural numbers. This
mapping is actually an enumeration of all the values which the type
can take. The predefined ordinal types are INTEGER, CHAR, and
BOOLEAN. New ordinal types can be defined by enumerating all the
values which the type can take. In addition, new ordinal types may be
defined as subranges of other ordinal types.

A.l The Type INTEGER

Variables declared as type INTEGER may take on values in the range
-32768 to +32767. All the arithmetic and relational operators can be
used with integer constants and variables. However, the relational
operator IN is used only in conjunction with sets (see chapter 4).

Note: Integer calculations which cause an overflow will not generate
an overflow error. (eg. MAXINT + 1 = -32768)

Syntax of type INTEGER:

-->INTEGER-->

Example declaration:

VAR i,j,k: INTEGER:

Example integer constants:

59 -1 0 329 -10000

- 24 -

29872

Simple Data Types Chapter 3

A.2 The Type CHAR

Variables declared as type CHAR can take single characters as values.
The set of valid single characters is defined by a character set. All
characters have an associated ordinal number in the range Oto 255. A
table of ASCII characters with associated ordinal numbers is listed in
the appendix. There are two functions which may be used in
conjunction with the character set. The function ORD(character)
returns the ordinal number of the character specified. The function
CHR(ordinal number) returns the character associated with the
specified ordinal number. These are known as transfer functions
because they are used to transfer a·character value to an integer
value and vice versa. Constants of type CHAR are denoted by using
single character strings. All relational operators may be used with
variables and constants of type CHAR.

Syntax of type CHAR:
-->CHAR-->

Example declaration:

VAR alpha, beta

Example character constants:

'9 ' I a I 't9F'

A.3 The type BOOLEAN

: CHAR;

Example relational expression:

'A' < 'B'

The boolean type represents logical data. A logical value is
represented by the predefined identifiers FALSE and TRUE. These are
the only possible values of a boolean variable or expression.

Syntax of type BOOLEAN:

-->BOOLEAN-->

The boolean type is defined by the following enumeration:
BOOLEAN= (FALSE, TRUE)

The boolean operators AND, OR, and NOT take boolean operands and
yield boolean results. The relational operators~, <>, <•, <, >,
>=, and IN all yield boolean results. See chapter 7 for examples of
boolean expressions.

Example declaration: Boolean Constants:

VAR switch : BOOLEAN; FALSE TRUE

- 25 -

Simple Data Types Chapter 3

A.4 The Enumerated Type

Pascal allows you to define your own ordinal types. A new type may
be created by enumerating all the values that the type may take. This
is done by giving the new type a name and listing the values which the
new type can take.

Syntax of the enumerated type:

I (--

I
V 1

--> C ---->id---->>-->

Example definitions of enumerated types:

names= (Fred, Joe, Nancy, Susan);

foods 2 Chotdog, hamburger);

The values listed are identifiers . The order in which the
identifiers are listed defines a relationship. The identifiers can be
thought of as being mapped on to a set of natural numbers. The first
identifier maps to O, the second to one, the third to two, and so on.
This implies that identifierl < identifier2 < identifier3 •.. <
identifierN. For example, consider the predefined type:

BOOLEAN= (FALSE,TRUE)

The boolean value FALSE is less than the boolean value TRUE because
FALSE appears in the list before TRUE. This kind of ordered
relationship applies to any enumerated type. Consider the type
definition:

colors= (red, blue, green)

By this definition, a variable declared as type colors can take on
the the value red, blue, or green. The definition also implies that
red< blue< green.

The ordering means that enumerated values can be used in relational
expressions. It also means that they may be used for range
specifications. For example, consider the FOR statement. The range
of the loop control variable is defined by specifying a starting and
stopping value. These starting and stopping values could be the
values of an enumerated type. For example, if color has been declared
as type colors, the following statement is valid:

FOR color:• red to green DO •...•

- 26 -

Simple Data Types Chapter 3

A.5 Subrange Types

A subrange type is simply a type defined to take on a subset of the
values representing some ordinal type.

Syntax of the subrange type:

-->constant--> • . --> constant-->

The use of subranges can sometimes save memory. For
integer variable whose values are always in the range
could be declared as a subrange of the type INTEGER.
a new type as follows:

byte = o •• 255

example, an
of Oto 255
You might define

Now, variables declared as type byte would be allocated 8 bits of
storage rather than the 16 bits which is allocated for variables
declared as type INTEGER. The compiler allocates the minimum amount
of storage required to represent the range of values specified by a
subrange type.

The use of subranges can better document a program by defining the
range of valid values a variable declared as the subrange type can
take on. Subrange types are also often used in conjunction with SET
types which are discussed in section B of chapter 4.

B. The Type REAL

The type REAL is used to represent fractional numerical data. The
implementation of reals is machine dependent. Information on the
size, range, and accuracy of reals is discussed in the System
Implementation Manual. See section B of chapter 1 for the syntax of
real constants.

Syntax of REAL:

--> REAL -->

Ex~mple declaration:

VAR X , y , Z

Example real constants:

2.3 -129.345

REAL;

5 . 496E-14

- 27 -

-7983.8510+23

Structured Data Types Chapter 4

STRUCTURED DATA TYPES

There are four kinds of structured data types: the ARRAY, the SET,
the FILE, and the RECORD. These four kinds of data types represent
four different ways of organizing the simple data types into a data
structure. A data structure can also include other data structures as
components. It is then possible to build very complex structures from
the basic simple data types. All structured data types can be packed.
This means that the most compact form of storage possible will be
used. Packing a data structure can sometimes save memory. However,
packing may cause access time to increase. The decision to pack or
not depends on the specific application. The keyword PACKED signals
the compiler to pack the data type into its most compact form. When
structured types contain other structured types, the keyword PACKED
must be applied to the innermost structure as well as the outermost to
have any effect.

A. The Type ARRAY

The ARRAY is a data type which defines a structure composed of a
fixed number of data elements which are all of the same type. The
data elements can be defined to be of any one type. They could be
defined as one of the simple types or as one of the structured types,
including ARRAY. Arrays can be defined to be of any dimension. The
number of dimensions, the number of elements in each dimension, and
how the elements are accessed is specified by an index definition.
The index definition consists of a list of ordinal types(excluding the
type INTEGER for the reason that this would create an array too large
to fit in memory). The number of types specified corresponds to the
number of dimensions of the array.

Syntax of the type ARRAY:

, <-------
I
V

I
V 1

--->PACKED---> ARRAY--> [--->ordinal type--->]--> OF--> type-->

- 28 -

Structured Data Types Chapter 4

Example declarations:

TYPE

VAR

ARRAY [0 • • 5,1 .• 10] OF INTEGER;
= (red, blue, green, yellow);

table=
colors
report
day
class
chart

: ARRAY [1 •• 20] OF table;
: ARRAY [1 • . 365] OF REAL;

ARRAY [0 •• 8,0 •• 5] OF INTEGER;
: ARRAY [colors] OF INTEGER;

Elements of variables declared as type ARRAY are accessed by
specifiying the variable name and listing expressions which evaluate
to ordinal values that fall into the range of the ordinal types of the
index definition.

Examples of accessing array elements:

report[5,3,6] day[40] class[0,0·] chart[red)

B. The Type SET

A set is a collection of distinct elements which are all of the same
ordinal type. The elements of a set are called set members . There
may be up to 256 members in a set. The 256 member limit causes the
restriction that a set can not be defined to be of ordinal type
INTEGER. Also, subranges of type INTEGER which include negative
integers are not allowed as set base types. A set can have no members
in which case it is called an empty set.

Syntax of the type SET:

-->SET--> OF--> ordinal type-->

Example declarations:

TYPE days= (sunday, monday, tuesday, wednesday,
thursday, friday, saturday) ;

VAR lowercase, digits, special
schooldays, workdays

day

SET OF CHAR;
: SET OF days;
: days ;

A variable declared as type SET can take on any values which are
subsets (including the empty set) of the values defined by the type of
the set. The type of the set is specified after the keyword OF.

Set values are denoted by listing set members within square
brackets. The individual members can be specified as ordinal
expressions.

- 29 -

Structured Data Types Chapter 4

Syntax of set notation:

--------------, <-----------------

I
V V V

--> [-----> ord expr ---> •• --> ord expr ------>] -->

The •• notation between two members specifies that all values in
between are also to be included as members. For example, [0 •• 3,7 .• 10]
would denote a set with members 0,1,2,3,7,8,9,10. The empty set is
denoted by [] .

Example assignments to set variables:

schooldays:= [monday, wednesday, friday];
workdays :2 [monday •• friday];
lowercase:= ['a' .• 'z'J;
digits := ['0' •. '9']
special : = [, * , , , % , , , @, J

The relational operators which are applicable to sets are (IN,=,
<>, <z, and>=)

IN

=

A single element can be tested to see if it is
a member of a set. The operator IN is used for
this testing of set membership. This operation
evaluates to TRUE if the single element on the
left is a member of the set on the right.

Two sets can be compared to see if they contain
exactly the same members. The operator= is used
to test for set equality. If each member of each
set is also a member of the other then the
operation evaluates to TRUE.

<> Two sets can be compared to see if they do not contain
exactly the same members. The operator<> is used
to test for set inequality. If any member of either
set is not also a member of the other then the operation
evaluates to TRUE.

- 30 -

Structured Data Types Chapter 4

<=

>=

A set can be compared to another set to see if the
first set is a subset of the second set. The
operator<= is used to test for set inclusion. If all
the members of the set on the left are also members
of the set on the right then the operation evaluates
to TRUE.

A set can be compared to another set to see if the
first set is a superset of the second set. The
operator>= is used to test for set containment.
If there are no members in the set on the right which
are not also members of the set on the left then the
operation evaluates to TRUE.

Example use of relational operators:

IF day IN workdays THEN gotowork; C*gotowork is a procedure*)
IF character IN digit THEN WRITE(character);
IF workdays>= schooldays THEN noweekendclasses;

Relational Expression

monday IN [monday, tuesday]
'A' IN ['a' .. 'z']

[1, 2 , 3] >= [O 1
[1, 2 , 3] >= C 2]
(I% I] (= [I* t , I% I]

[] <= [tuesday]

Evaluation

['a', 'f', 'g'] = ['a', 'f', 'k']

TRUE
FALSE
FALSE
TRUE
TRUE
TRUE
FALSE
TRUE (11 = (11

The arithmetic operators which are applicable to sets are<+, - ,
and *) .

+
Two sets can be combined to form a third set
containing all elements that are members of either
set. The operator+ performs the union of two sets.

A set can be formed as the difference between two sets.
The operator - performs set difference. The result
is a set containing all members of the set on the left
which are not also members of the set on the right.

- 31 -

Structured Data Types Chapter 4

*
A set can be formed which contains only the members
which exist in both of two other sets. The operator*
performs the intersection of two sets.

Examples:

Expression

[1, 2, 3) + [4, 5, 6)
[1, 2, 3) + [2, 3, 4)

[1, 2, 3] - [2]
(1, 2, 31 - [4]

[1, 2, 3) * [4, 5, 6)
(1, 2, 3) * [2, 3, 4)

C. The Type FILE

Result

Cl, 2, 3, 4, 5, 6)
Cl, 2, 3, 41

(1, 3)
Cl, 2, 31

[]
(2, 3]

The data type FILE provides the link between a program and the
peripheral equipment of the computer system. Variables declared as
type FILE represent logical files. Input and output operations always
refer to logical files. Each logical file has an associated physical
file. The physical file is the actual device to which an operation is
directed. A physical file is a device such as a terminal, printer,
disk file, etc • • • Since all input and output operations reference
logical files rather than physical files, a programs input or output
can be redirected simply by associating the logical file with a
different physical file. The method of associating logical files to
physical files is discussed in the System Implementation Manual.

File data elements can be of any type except FILE or structured
types containing a component of type FILE.

Structured variables (eg. array or record variables) may contain
components of type FILE. However, the I/0 routines (see chapter 10)
will accept only simple variable names. For example, file names
such as "customer.file!" or "files[2]" are not accepted by the I/0
routines. See the appendix for an example of how to work around this
restriction.

- 32 -

Structured Data Types Chapter 4

Syntax of type FILE:

-->FILE--> OF--> type-->

Input and output can be greatly simplified by declaring variables as
files of structured types. For example, a complete record can be read
or written to a file of records simply by specifying the file variable
name and the record variable name as parameters to an input or output
procedure.

Example of file declarations:

Type sales= RECORD
salesman: PACKED ARRAY[l •• 20) OF CHAR;
quantitysold: INTEGER;
END;

VAR salesfile FILE OF sales;
numbers : FILE OF INTEGER;

The data elements of files declared as above are read and written in
binary format. Binary format is the form in which the data is
actually stored in memory. No translation of the data is done during
the I/O process to a character readable form. The advantage of this
type of I/O is speed of data transfer and minimization of disk storage
requirements. The disadvantage is that the data is in a non-readable
form.

A special type of file is provided for handling character formatted
data . In a TEXT file, data is stored as characters. Input and output
then involves a translation to and from the internal binary data
format.

C.l The type TEXT

There is a predefined type of file called TEXT. Text files have
special characteristics. Unlike other file types, a text file is
divided into lines. There is some mechanism which is implementation
dependent which marks the separation between lines, each line being a
sequence of characters . The data types which can be input from and
output to text files are not restricted to characters only, even
though a text file is actually a file of characters. The characters
of a text file may represent string, integer, real, or boolean values.
The Pascal I/O routines make the appropriate character to binary and
binary to character conversions with TEXT files. There are two
predeclared variables of type TEXT (INPUT and OUTPUT). These are the
default parameters for the I/O procedures and functions discussed in -
chapter 10.

- 33 -

Structured Data Types Chapter 4

Example declarations:

infile, outfile: TEXT;

There are two built in procedures and one built in function which
apply only to text files.

WRITELN

READLN

EOLN

The procedure WRITELN terminates the current line
and positions a file pointer to the next line. If
any variables are specified to be output by the
WRITELN, they are output first and then the file
pointer is advanced to the next line.

The procedure READLN causes the file pointer to be
positioned to the beginning of the next line. If any
variables are specified to be input by the READLN,
they are input first and then the file pointer is
advanced to the next line.

The function EOLN is a boolean function which
evaluates to TRUE when the end of a line has been
reached. At all other times it evaluates to FALSE.

(See chapter 10 for details)

D. The type RECORD

The type RECORD is characterized by a fixed number of elements which
are called fields. The fields of a record can be of different types.
Record field identifiers can be declared to be of any type, including
RECORD. Therefore, records can be nested.

Syntax of the type RECORD:

I I
V V

--->PACKED---> RECORD--> field list--->;---> END-->

- 34 -

Structured Data Types Chapter 4

The field list describes the individual components of a record . All
the field identifiers within a record must be unique. However, field
identifiers are scoped within the record itself which means that an
identifier outside the record definition can be identical to a field
name within the record. The field list consists of two separate
parts, a fixed part and a variant part. A record can contain either
or both of these two parts. If both parts are present, the fixed part
must precede the variant part. The fixed part refers to the part of
the record which is always referenced in the same way Cie. the
fields are fixed). The variant part refers to the part of the record
which may be referenced in multiple ways Cie . the fields may vary).

Syntax of field list:

I
V

---> fixed part--->;---> variant part--->

I

Syntax of the fixed part of a record:

-------------- ; <-----------
<---

I
V V 1

------>id------> : -->type--->

Example record using fixed fields:

RECORD
business: PACKED ARRAY[l .. 25] OF CHAR;
location: RECORD

END;

street,
city ,
state
zip

END;-

- 35 -

PACKED ARRAY[l • . 15] OF CHAR;
INTEGER;

Structured Data Types Chapter 4

A particular field of a record variable is referenced by the variable
name followed by the field name. A period separates the two names.
If the field name is itself a record, then a field within the nested
record is referenced by appending a period and the field name to the
other two names.

Syntax of record variable referencing:

I
V

--> record variable id--->. ---> field id--->

Example referencing:

Assume that customer is a record variable as defined
on the previous page,

then

customer.business
customer.location

references first field
references second field

The nested fields of the field "location" are referenced by:

customer.location.street
customer.location.city
customer.location.state
customer.location.zip

D.l Record Variants

Sometimes it is useful to be able to define a storage area in a
record which can be accessed in multiple ways. Record variants
provide the ability to ·do this. In certain applications, they can
simplify a program and save storage space at the same time.

- 36 -

Structured Data Types Chapter 4

A record variant defines a fixed size storage area of a record which
can be accessed in multiple ways. The size is determined by the
variant alternative which requires the largest amount of storage
space. The variant is defined using a form similar to that of the
CASE statement.

Syntax of the variant part of a record:

I
V

-->CASE---> tag field id-->:---> type--> OF

-------------------; <-----------------------------

V

------, <----

t I
--------->constant---> --><-->field list-->) --->

Each alternative way of accessing the storage area of a variant is
defined by a field list. All field names within the variant
definition must be unique. The storage area can then be accessed in
the desired way simply by specifying the appropriate field name .
There are two forms of the variant. In one form, a tag is specified
and becomes a field in the record. The tag field resides in the
record just prior to the variant storage area. The purpose of the tag
field is to store a value which specifies for each record the
alternative of the variant which is in effect . The other form omits
the tag field which in some cases is not needed.

Example using no tag field:

PACKED RECORD
CASE BOOLEAN OF

FALSE: (whole
TRUE: (bytel,byte2

END;

- 37 -

: INTEGER);
:0 •. 255;);

Structured Data Types Chapter 4

This variant definition would define a storage area of two bytes
(assuming an integer is 16 bits) which is the largest amount of
storage required for either of the two field lists. You could then
access the whole two byte storage area as an integer or you could
access each individual byte of the integer. The storage could be
pictured as follows:

hytel
whole or

byte2

The type BOOLEAN was chosen as the selector of the CASE because it
defines two possible values which is what is needed to specify the two
alternatives. Another type could have been defined and used just as
well. With the variant defined as above, you could now reference the
integer or the bytes simply by specifying the appropriate field name:
whole, bytel, or byte2. For example, if "number" is a variable
declared as this record type, then "number.whole", "number.bytel", and
"number.byte2" are the possible ways of referencing this storage area.
Care must be taken when using variants for this purpose . The way in
which the fields of the different forms of the variant overlap one
another is implementation dependent. Also in the above example, which
byte would be the low byte and which would be the high byte is
implementation dependent. (See the System Implementation Manual)

Example using tag field:

Assume the type definition:
itemtype ~ (circle, rectangle, triangle)

PACKED RECORD
xcoordinate, ycoordinate :REAL;
CASE item :itemtype OF

circle :(radius
rectangle :Clength,width
triangle :(baselength

angle
END;

- 38 -

:REAL);
:REAL);
:REAL;
:INTEGER);

Structured Data Types Chapter 4

This record definition contains a fixed part as well as a variant
part with a tag field. The storage allocation for th i s record could
assume the following structures:

xcoordinate xcoordinate xcoordinate

ycoordinate ycoordinate ycoordinate
tag or or

field--> item item item

radius length base length

width angle

The storage allocated would be the amount required to store the
two real numbers of the fixed part, the tag field, and the two real
numbers of the rectangle field list. The other field lists of the
variant require less storage than the rectangle list. The information
of which alternative of the variant is in effect can now be stored as
part of each record via the tag field. The tag field is referenced in
the same manner as the other fields.

Note:
Variants can be nested. That is, a variant can
contain a definition of another variant . However,
there can be only one variant at any one level
and the variant definition must follow any fixed
fields of a record.

- 39 -

Pointer Data Type Chapter 5

POINTER DATA TYPE

The pointer data type is used in conjunction with dynamic storage
allocation. This refers to the creation of storage space for
variables during program execution. This is very useful when the
amount of data storage a program will require is unknown. The use of
pointer data types provides the ability to allocate storage as it is
needed. Variables for which storage is dynamically created cannot be
referenced in the usual manner. The reason is that they actually have
no identifiers of their own. Instead, they are referenced through the
use of pointers. A pointer is actually a variable which points to the
location in memory of a dynamically created variable.

The definition of a pointer type specifies the data type for which
storage will be allocated. The data type then determines the amount
of storage required for each allocation. The definition of a data
type does not have to precede the definition of a pointer type which
references it. This is the only exception to the rule that
identifiers must be defined before they are used. This allows for a
field of a record to be declared as a pointer to the record itself.
Either the symbol - or the symbol@ may be used to signify a pointer
type.

Syntax of type pointer:

---> -

I I
V

------->@------->type id-->

Example pointer declarations:

TYPE transptr = @transaction;
transaction= RECORD

item
price
link
END;

:INTEGER;
:REAL;
:transptr;

In the above declaration, transptr is a pointer type defined to be a
pointer to the data type transaction. Transaction is a record
consisting of three components (item, price, and link). Dynamic
variables of the type transaction can be created through the use of
pointer variables of type transptr. Notice that link is declared to
be of type transptr. This component of the record is a pointer
variable which may point to another dynamic variable of type
transaction. Therefore, a linked list of transaction records can be
formed with the link field of each record pointing to the next record.

- 40 -

Pointer Data Type Chapter 5

The predeclared procedure NEW is used to allocate storage for dynamic
variables. It has one argument which is a pointer variable. The NEW
procedure allocates the amount of storage required by the data type
associated with the pointer and assigns the address of the allocated
storage to the pointer. The pointer is then used to reference the
allocated storage. For example, consider the declaration:

list: transptr;

Then the statement NEW(list) would allocate the amount of space
required to store the three components of a transaction record at some
location in available memory and assign the location in memory to the
variable list. The available memory is called the heap and its size
is set at run time. (See the System Implementation Manual)

References to a variable which is pointed to by a pointer are made by
following the pointer name with either the symbol A or the symbol@.
In the above example, list@ would reference the dynamically created
transaction record.

Syntax of referencing dynamic variables:

--> A

I I
V

--> pointer id---->@------->

Example referencing of dynamic variables:

list@ references whole record

list@.item
list@.price references individual fields
list@.link

list@.link@ references record pointed to by link field

list@.link@.item
list@.link@.price references individual fields
list@.link@.link

- 41 -

Pointer Data Type Chapter 5

When a dynamically created variable is no longer needed, it may be
disposed of. This is the process of freeing the space consumed by the
variable for other uses. The predeclared procedure DISPOSE is
provided for this purpose. Like the NEW procedure, it has one
parameter which is a pointer. The DISPOSE procedure frees the memory
allocated to the variable pointed to by the pointer. Referring to the
above example, DISPOSE(list) would free the amount of memory which was
allocated to the dynamic transaction variable.

A predefined constant NIL can be used to assign a value to a
pointer. Other than using the procedure NEW, assignment to the
constant NIL is the only way of giving a pointer a defined value. If
a pointers value is NIL, then it does not point to a dynamic variable.
This is often used with linked lists to give the pointer of the last
element in the list a defined value. It provides a way of detecting
when the end of the list has been reached.

Example procedures using pointer variables:

PROCEDURE create(VAR translist: transptr);

(* Creates a new transaction
Adds the transaction to the top of a transaction list
Returns a pointer to the new transaction via translist
New transaction becomes top of transaction list*)

VAR

BEGIN

trans (*new transaction pointer*)
transptr;

(*note: translist should be initialized to NIL*)

NEW(trans); (*create new transaction*)
trans@.link:~translist; (*new transaction points to old top of list*)
translist:atrans; (*new transaction becomes top of list*)

END; (*procedure create*)

- 42 -

Pointer Data Type Chapter 5

PROCEDURE destroy(translist, trans: transptr);

(* Removes the transaction pointed to by trans from the list
Recovers the memory used by the transaction *)

VAR

BEGIN

lead,
trail

lead:=translist;

(*points to next transaction in list*)
(*saves location of current transaction

while lead is advanced to the next
transaction*)

transptr;

While lead<> trans DO (*search for trans*)
BEGIN
trail:=lead;
lead:=lead@.link;
END;

(*save pointer to current transaction*)
(*advance pointer to next transaction*)

IF translist <> trans THEN (*check if trans is at top of list*)
trail@.link:=lead@.link (*link around transaction*)

ELSE
translist:=lead@ . link;

DISPOSE(trans);
END;

(*new top of list*)
(*recover memory*)
(*destroy*>

- 43 -

Operators Chapter 6

OPERATORS

There are four categories of operators: arithmetic, relational,
boolean, and type transfer.

A. Arithmetic Operators

The following table lists all the arithmetic operators, the
operations they perform, the type of operands which may be used, and
the type of result of the operation. Mixed mode arithmetic is
supported. (eg. it is allowed to have an integer value added to a
real value) Also, automatic truncation occurs when an integer variable
is assigned a real value.

Operator Operation Type of Operands Type of Result

addition integer, real integer, real
+

sets of compatible same type as
set union types the larger set

subtraction integer, real integer, real
-

sets of compatible same type as
set difference types the larger set

multiplication integer, real integer, real
*

set sets of compatible same type as
intersection types the larger set

I division integer, real real

truncated
DIV division integer integer

MOD modulus integer integer

Note: For sets to be of compatible types they must
have identical base types, one base type must
be a subrange of the other, or they may both
be subra_nges of the same base type.

- 44 -

Operators Chapter 6

B. Relational Operators

All relational operators perform operations which yield Boolean
results. The result is always either TRUE or FALSE. In general, both
operands of a relational operator must be expressions of identical
type, but the types REAL, INTEGER, and subranges of integer may be
mixed.

(Relational operations may be performed on any types except files)

Operator Result of Operation
------------ -----------------------

= true if left operand is equal to right

<> true if left operand is not equal to right

< true if left operand is less than right

> true if left operand is greater than right

<= true if left operand is less than or equal to right

>= true if left operand is greater than or equal to right

To compare strings, the ordinal numbers of the characters composing
both strings are compared to one another until a pair of characters
are different or until the end of the strings is reached. If there
are no character pairs which differ then the strings are equal.
Otherwise, the first pair of characters which differ determine the
relationship. The string whose character ordinal number is the
largest is greater than the other string.

Operation Result

'abc' = 'cdf'
'abc' < 'abd'
'bab' > 'adf'

- 45 -

FALSE
TRUE
TRUE

Operators Chapter 6

The following operator tests for set membership. The left operand
may be any ordinal type and the right operand may be any set of the
same ordinal type.

IN true if left operand is a member of the right
(See section B of chapter 4)

C. Boolean Operators

The boolean operators, like the relational operators yield boolean
results. The result is always either TRUE or FALSE. The operands of
a boolean operator must be boolean expressions.

Operator Result of Operation

OR true if either one or both of the operands is true

AND true only if both operands are true

NOT true if operand is false

Operation Result
--------- ------

FALSE OR FALSE FALSE

TRUE OR FALSE TRUE

FALSE OR TRUE TRUE

TRUE OR TRUE TRUE

FALSE AND FALSE FALSE

TRUE AND FALSE FALSE

FALSE AND TRUE FALSE

TRUE AND TRUE TRUE

NOT TRUE FALSE

NOT FALSE TRUE

- 46 -

Operators Chapter 6

D. Operator Precedence

Operator precedence defines the order in which operations take place
within expressions. In general, expressions are evaluated from left
to right. However, operations of higher precedence are performed
before operations of lower precedence. All operators are ranked by
precedence. Parentheses have the highest precedence and may be used
to alter the normal order of evaluation. Nested parentheses are
evaluated from the inside out.

Following is a list of the operators arranged by precedence.
Operators listed on the same line have equal precedence. The
precedence has been slightly altered from the Jensen & Wirth standard
to eliminate excessive use of parentheses. The operators NOT, AND,
and OR have been altered. In the standard, NOT immediately precedes
the unary operators, AND is the same precedence as* etc., and OR
is the same precedence as+,-. This alteration should not effect
porting standard Pascal to TRS-80 Pascal . However, if porting from
TRS-80 Pascal to some other Pascal, you should parenthesize expressions
just as you would had the precedence not been altered.

Highest
Precedence--> C)

+, when used as unary operators

* , /,DIV, MOD

+ ,

= , < > I < , > I <= , >= , IN

NOT

AND
Lowest

Precedence--> OR

Operation

8+3*4

10-8/4*2

5 MOD 10-5

3<2 OR 6>8 AND TRUE

NOT 7*2<5

Equivalent To

8+(3*4)

10-((8/4)*2)

(5 MOD 10)-5

(3<2) OR ((6>8) AND (TRUE))

NOT C C 7* 2) <5)

- 47 -

Result

20

6

0

FALSE

TRUE

Operators Chapter 6

E. Type Transfer

The type transfer operator is used to temporarily change the type of
an existing variable. This is useful when there is a need to
reference a variable in a manner which would normally not be allowed
by Pascal. For example, you might wish to access the lower and upper
bytes of an integer variable. The type transfer operator allows rou to
access parts of variables. Also, it provides a mechanism for avoiding
compiler type checking. This may be used in some cases where parameters
of differing types must be passed to a procedure.

Syntax of type transfer:

--->variable--->::---> type id--->

A type transferred variable may be used wherever a variable is
allowed. Regardless of its original type, the type transferred
variable is then accessed according to the type indicated. The type
transfer operator tells the compiler to treat the variable as if it
were of the new type. No data conversion takes place. The variable
is simply referenced as if it were of the new type. Type transferred
variables must adhere to the same type matching rules as normal
variables.

Example use of type transfer operator:

TYPE byte= O .. JFF;
integrec = PACKED RECORD

upper, lower
END;

pointer= @integrec;

:byte;

VAR number: ARRAY[l .. 10] OF INTEGER;
integr: integrec;
address: poi nter;

Valid type transfer operations:

integr.upper := number[l]::byte;
number[l]::byte := integr . lower;
READ(integr::INTEGER);
number[S] := address::INTEGER;
address::INTEGER := 25 + number[3];

The fundamental use of type transfer is to overlay a type template on
a data structure so that components of the structure may be treated as
if they were of any desired type. This requires a precise
understanding of how the compiler represents the data type (how it is
stored) in order to insure the operation does what was intended.
Because of this, it should be use d with caution and only when
necessary. (See the System Implementation Manual)

- 48 -

Expressions Chapter 7

EXPRESSIONS

An expression is a variable, a constant, a function call, a set
notation, or a combination of these operands with a description of the
operations to be performed on them. The operators and operands of an
expression define an implicit type for the expression. When
evaluated, the expression yields a value of that type. For example,
an integer expression is composed of operands and operators which when
evaluated yield an integer result, a real expression yields a value of
the type REAL, an ordinal expression-yields a value which is of one of
the ordinal data types, etc •••

An expression can be just a simple expression or it can be a
boolean expression. A simple expression can yield a value of any data
type. A boolean expression is composed of simple expressions but
always yields a value of the type BOOLEAN.

Syntax of expression:

--> boolean expression

I I
V

----> simple expression ------>
Syntax of simple expression:

--> - --- - <--

--> + ---1 1--- + <--
V V

-------------------->term---->

Syntax of term:

MOD<-

DIV <-

/ <--

* <--
V

----->factor----->

- 49 -

Expressions

Syntax of factor:

---> set notation

---> function call

---> variable id

---> constant
V

----> (-->expression-->) ---->

Chapter 7

For the syntax of set notation, refer to the structured data type
SET. A function call has the same form as the procedure statement.
The only difference is that a procedure call is a statement while a
function call is a part of an expression. Remember that a function
has a type associated with it. When a function call is encountered in
an expression, the named function is activated . Somewhere in the
function a value is assigned to the function name. When the function
terminates, the value assigned to it is substituted in the expression
for the function call.

Note: a function may be an ordinal type or the type REAL only.

Syntax of a function call:

------, <-----
❖ I

---> function id---> (--->expression --->

Example function calls:

salary

payment(interestrate,years)

sum(a+b)

- so -

V
--->

Expressions

Example simple expressions:

Expression

time

Result

same type as time

set

Chapter 7

weekday+ [saturday,sunday]

12*payment(interestrate,years) integer or real depending on
type of function •payment"

entry MOD size

-10 DIV 4 + 9.2/6 -45

(varl+var2)*153/(var3-var4)

Syntax of boolean expression:

OR<------
I
V 1

----> boolean term---->

Syntax of boolean term:

AND<-------
I
V 1

----> boolean factor---->

Syntax of boolean factor:

integer

real

real

-------- --> relational expression

I I I V V
---->NOT-------------> factor--------------->

note: factor must be of type BOOLEAN

- 51 -

Expressions

Syntax of relational expression:

--> =

--> <

--> >

--> <>

--> <=

--> >=

Chapter 7

V
---> simple expression----> IN----> simple expression--->

Example boolean expressions:

a=b OR c<d AND switch

nl + n2 >= 20 ANO n3-n4 <= 11

NOT here OR there

NOT alpha< beta AND gamma<> 'R'

number IN (1 •• 15] OR NOT letter IN ['a' .• 'z']

- 52 -

Statements Chapter 8

STATEMENTS

Statements are the Pascal sentences that describe the actions and
logic of a program. Statements reside in the statement body part of a
block.

A statement may be labeled or unlabeled. A labeled statement is
used in conjunction with the GOTO statement. If a statement is
labeled, the label must be declared in the LABEL declaration part of
the block in which the statement appears.

Syntax of a statement:

I
V

--->label---> : ---> unlabeled statement--->

Syntax of an unlabeled statement:

--> procedure statement

--> GOTO statement

--> WITH statement

--> CASE statement

--> IF statement

--> REPEAT statement

--> WHILE statement

--> FOR statement

--> compound statement

--> assignment statement
V

---------------------------------->

- 53 -

Statements Chapter 8

A. The Assignment Statement

The assignment statement is used to assign values to variables and
function identifiers.

Syntax of the assignment statement:

--> function id

I I
V

----> variable id------> : 2 -->expression-->

The action of the assignment statement is to give the variable or
function identifier on the left side of the equal sign, the value of
the evaluated expression on the right side. The variable may be of
any type. In general, the type of the variable or function
must be the same as the type of the evaluated expression.
However, there are some exceptions . An identifier of type REAL may be
assigned a value which is an integer or a subrange thereof. One side
may be a subrange of the other but the value to be assigned should be
in the range of the left side. If the identifier on the left side is
a SET type, it may be assigned to a set which differs in type as long
as the set members of the right side are allowable members of the set
on the left side .

Example assignment statements:

Assignment

a:= 10

X := 100.5 + 49 + 87/12

y := abs(l0*z-30.3)

test:= sample< 10

left hand side identifier types

integer or real

real

real

boolean

- 54 -

Statements Chapter 8

B. The Compound Statement

Statements which are bracketed by the two keywords BEGIN and END make
up what is termed a compound statement. The compound statement is
used in places where more than one statement is required. The
compound statement is essential for most of the control structures of
Pascal. For example, the FOR statement is a control structure used
for executing a statement repeatedly for a specified number of times.
The compound statement provides the ability to use this construct for
executing a sequence of statements rather than just one.

Syntax of the compound statement:

------; <----

t I
-->BEGIN---> statement---> END-->

Example compound statement:

BEGIN
a:• b * c;
d :m a/10 + 16.9;
e := d - 28.3 + 14;

END

C. Repetitve Statements

Repetitive statements are the structures used for loop control. They
specify that a statement or sequence of statements is to be executed
repeatedly until some terminating condition occurs. Pascal provides
three such control structures.

- 55 -

Statements Chapter 8

C.l The FOR Statement

The FOR loop is used when a statement is to be executed a predefined
number of times. The FOR loop is characterized by a loop variable
which serves as a counter for controlling the number of times a
statement is executed. The counter has defined starting and ending
values which are ordinal expressions. The expressions are evaluated
once upon entry into the loop. At the beginning of each time through
the loop, the counters value is compared to the ending value to
determine whether or not to end execution of the FOR. At the end of
each time through the loop the counters value changes by 1. If the
keyword TO is used, the counter is incremented each time through the
loop, while the use of the keyword OOWNTO causes the counter to be
decremented. The loop is terminated when the counter has incremented
or decremented past the ending value. The FOR statement is not
executed if the counters starting value is such that the ending value
would never be reached. For example, if the starting value was -1,
the ending value was 2, and OOWNTO was used, the FOR statement would
not be executed.

Note:
The compiler option FORDECL may be used to cause
the compiler to generate temporary variables for
FOR loop counters. When this option is used, it
is not necessary to declare the counter variable.

Syntax of the FOR statement: (counter must be ordinal type)

--> DOWNTO

I I
V

-->FOR--> counter id-->:=--> ord expr ------>TO---------

I
---> ord expr -->DO--> statement-->

Example FOR statements:

FOR i := l TO 30 00 WRITELN(' this gets written 30 times')

FOR j := first OOWNTO last DO
BEGIN
initialscore[j) := 0;
time[j) := 60;
END

- 56 -

Statements Chapter 8

C.2 The WHILE Statement

The WHILE statement uses a boolean expression to control repeated
execution of a statement.

Syntax of the WHILE statement:

-->WHILE--> boolean expr -->DO--> statement-->

The evaluation of the boolean expression precedes the execution of
the statement. If the expression evaluates to TRUE, the statement is
executed and then the expression is reevaluated. This loop continues
until the expression evaluates to FALSE. The first occurrence of a
FALSE evaluation causes termination of the WHILE statement.

Example WHILE statements:

WHILE NOT EOLN DO READ(character)

WHILE (a<b) AND (b<c) DO
BEGIN
WRITELN(a,b,c):
a:= a+ 1:
C :• C - 1:
END

C.3 The REPEAT Statement

The REPEAT statement, like the WHILE, uses a boolean expression to
control repeated execution.

Syntax of the REPEAT statement:

------: <----

t I
-->REPEAT---> statement---> UNTIL--> boolean expr -->

- 57 -

Statements Chapter 8

The REPEAT statement is defined such that a sequence of statements
which are bracketed by the two keywords REPEAT and UNTIL will be
executed at least once. Following the keyword UNTIL is a boolean
expression. If the expression evaluates to FALSE then execution
returns to the first statement following the REPEAT keyword. If the
expression evaluates to TRUE then execution continues with the
statement following the boolean expression.

Example REPEAT statement:

REPEAT
i : ,. i+l;
j :• j-1;
k[jJ := (i + j) MOD 100;
l[i) :=- (i + j) MOD 200;

UNTIL i•j

D. Conditional Statements

Conditional statements are used when the execution of a statement
must be controlled by some predetermined condition or when one
statement out of a group of statements is to be selected for
execution. There are two conditional statements.

D.l The IF Statement

The IF statement uses a boolean expression to control the execution
of statements.

Syntax of the IF statement:

I
V

-->IF--> bool expr -->THEN--> statement---> ELSE--> statement--->

- 58 -

Statements Chapter 8

In its simplest form, the IF statement involves the evaluation of a
boolean expression to determine whether or not to execute an
associated statement which follows the keyword THEN. If the
expression is TRUE, then the statement is executed, otherwise it is
not. The IF statement can also contain an ELSE clause. In this form,
if the boolean expression is TRUE, then the statement following the
keyword THEN is executed, otherwise the statement following the
keyword ELSE is executed.

Example IF statements:

IF finished THEN WRITELN(' operation complete');

IF number< 10 THEN range:= 1 ELSE range :=2;

IF alpha>- '0' AND alpha<= '9' THEN digit(alpha)
ELSE

IF alpha>= 'A' AND alpha<= 'Z' THEN letter(alpha)
ELSE

special(alpha);

IF contextlist = NIL THEN
BEGIN
NEW C context) ;
context@.link := NIL;
contextlist :a context;
END

ELSE
BEGIN
temp:= context;
NEW(context);
temp@.link := context;
context@.link := NIL;
END;

The statements following the keywords THEN or ELSE can themselves be
IF statements. In some forms, an ambiguity can exist in determining
which ELSE clause goes with which IF. For example, consider the
following case where bl and b2 represent boolean expressions and sl
and s2 represent statements.

IF bl THEN IF b2 THEN sl ELSE s2

- 59 -

Statements Chapter 8

The ELSE could go with the first IF or the second IF. The rule used
for solving the ambiguity is to associate an ELSE clause with the
nearest IF. The above statement would then be equivalent to:

IF bl THEN
BEGIN
IF b2 THEN sl ELSE s2
END

Caution: Semicolons must not appear in the middle of a
statement. The most common error for beginning
programmers is to put a semicolon in an IF
statement which has an ELSE clause. While semicolons
are necessary for separation of the individual
statements within a compound statement, they must
not separate an ELSE from its corresponding IF.

D.2 The CASE Statement

The CASE statement uses an ordinal expression to select one statement
out of a group of statements for execution. The group of statements
represent alternatives. When a CASE statement is executed, one of the
alternatives is selected and executed and then control passes to the
statement following the CASE statement.

Syntax of the CASE statement:

-->CASE--> ord expr -->OF-----------------
1

----------------; <----------------
V (----- • <---1 V

------>constant--->: -->statement---->---
1

I
V

------>OTHERWISE--> statement---> END-->

- 60 -

Statements Chapter 8

The alternative statements of a CASE statement are preceded by
constants. The ordinal expression is evaluated and compared to the
constants preceding the alternative statements . If a match is found,
the statement which has the preceding constant that matches the
evaluated expression is executed. There are two actions which can
take place in the event that no match is found. By using the
OTHERWISE clause, you may specify a statement to be executed when no
match is found. If the OTHERWISE clause is omitted and no match is
found, then execution continues with the statement which follows the
CASE statement.

Example CASE statements:

CASE nl+n2 OF
10: X := sin(x);
11: X :; COS (X);

12: X := ln (x);
END;

CASE day OF
monday snack :=
tuesday . snack •-. .-
wednesday snack :=
thursday snack : ::
friday snack :=
saturday,
sunday BEGIN

weekend
snack
END;

END;

E. The WITH Statement

apple;
orange;
grapes;
pear;
candy;

·-.- TRUE;
:= nothing;

CASE ch OF
'a','b','c':
'd','e','f':
OTHERWISE

END;

token:= O;
token:= l;
token := 2;

The WITH statement is used in conjunction with variables of type
RECORD. It makes it possible to use a shorter notation when
referencing fields of record variables.

Syntax of the WITH statement:

, <----
I
V 1

-->WITH----> variable-----> DO--> statement-->

- 61 -

Statements Chapter 8

The variable list specifies the record variables whose fields are to
be referenced simply by specifiying the field name itself. When
fields of a record are nested Cie. a record is defined as a field of
another record), the record variable and the fields, down to the level
of the field which is to be referenced in short notation, may be
specified in the variable list. Then the nested field can be
referenced in the statement simply by specifying its field name.
There is a conflict inside the WITH statement when an identifier
corresponds to both a variable name and a field name of one of the
specified records. For example, you could have a record variable
named •weekday• with a field named •monday• and also a simple variable
named •monday•. Then the following WITH statement might be used.

WITH weekday DO monday := 1

In such a case, the field name takes precedence over the variable
name and the field of the record is referenced. If nested WITH
statements are used and a field name inside occurs in more than one of
the specified records, then the closest WITH takes precedence.

Example WITH statements:

Assume the declarations:

customer: RECORD
name,
address,
city
date

:PACKED ARRAY[l •. 20] OF CHAR;
:RECORD

END;

WITH customer DO
BEGIN

month,
day,
year
END;

name :=
address:~
city :~
END;

'JACK SLATE
'1216 MELODY LANE
'TULSA, OKLAHOMA

WITH customer.date DO
BEGIN
month := 10;
day : ,. 23;
year :• 1981;
END;

- 62 -

:INTEGER;

I • ,
I • ,
I • ,

Statements Chapter 8

F. The GOTO Statement

The GOTO statement is used to cause an unconditional branch to a
labeled statement.

Syntax of the GOTO statement:

-->GOTO--> label-->

The label must be declared in the LABEL declaration part of the same
block which contains the GOTO referencing it. The GOTO statement
cannot specify a branch to a label outside the block in which it
resides. Care must be taken when using the GOTO statement. For
example, you should not branch inside a FOR loop from a statement
outside the loop. This could cause some very unpredictable results.

Example GOTO statement:

FOR i : 2 l TO 1000 DO
IF a{i) <> b{i) THEN GOTO 10
ELSE a (i) : = b (i) ;

10: a(i) := '10D';

G. The Procedure Statement

The procedure statement causes the activation of a procedure.
Control passes to the named procedure and then returns to the
statement following the procedure statement when the activated
procedure terminates. If a procedure has a parameter list, a
procedure statement which activates it must specify an argument for
each parameter of the parameter list. The arguments must match the
order and type of the parameters specified in the parameter list of
the procedure. An argument is specified as an expression. If a
parameter of a procedure is a pass by reference parameter (denoted by
VAR), the corresponding argument of a procedure statement must be a
single variable name. The variable may be a simple variable or a
component of a structured variable.

- 63 -

Statements Chapter 8

Syntax of a procedure statement:

I (--

I
V

--> procedure id---> (---> expr
1

--->
V

--->

Example procedure statement (call) :

(See the procedure declaration in section B.7 of chapter 2)

getvalue(n+j,8,hexstring,value)

report

writeout(x,y,3.7+9.6/z)

- 64 -

Procedures and Functions Chapter 9

PROCEDURES AND FUNCTIONS

(See chapter 2 for a description of the syntax of procedure
and function declarations. A discussion of parameter passing
is included with the discussion of the procedure heading.)

Procedures and functions are the tools used to modularize a program.
This is the process of breaking a program up into smaller and more
manageable pieces. They make a program much more readable and make
possible later modifications much easier to handle.

Procedures and functions can be compiled separately and then linked
to programs that use them. This allows for the development of
libraries of commonly used procedures and functions. Then all the
programs that use them can link them in rather than having to include
them in the program itself.

The variables declared in a procedure or function do not occupy
storage space until the procedure or function is activated. When
activated, storage space is allocated for the variables and when the
procedure or function terminates, the allocated space is released.
Therefore, the amount of storage (or stack) space required by a
program at any point in time is a function of the number of blocks
which are activated at that time.

A procedure is activated (or called) by a procedure statement. When
a procedure is called, control is passed from the point of the call to
the procedure. The statements in the procedure then are executed.
When the block END of the procedure is reached or when a call to the
ESCAPE procedure is made, control passes back to the statement
following that which activated the procedure.

A function is activated by an expression. When an expression which
contains a reference to a function is evaluated, the function
reference causes control to pass to the named function. The
statements in the function then are executed. Unlike procedures,
functions have a declared type. At some point inside the statement
body of a function, the function name should be assigned a value. The
value must be the same type as the type to which the function is
declared. When the block END of the function is reached or when a
call to the ESCAPE procedure is made, control passes back to the
evaluation of the expression which activated the function and the
function reference is replaced by the value assigned to the function.

- 65 -

Procedures and Functions Chapter 9

A. Scope Rules

A procedure or function declaration forms a new block which is a
subblock of the block in which the declaration appears. The new block
formed is •nested• within the block which declares it. This process
of nesting which occurs every time a procedure or function is declared
produces a program structure such as the one shown on the first page
of chapter 2. Any block which is enclosed by another block is said to
be nested within that block. The level numbers on the diagram
indicate how deep the nesting goes beyond the program block which is
arbitrarily assigned level 1. The existence of procedures and
functions makes it necessary to talk about scope rules. Scope rules
describe the accessibility of identifiers from any particular place in
a program. The two terms local and global are helpful in discussing
scope rules.

An identifier is considered to be local to a block if the identifier
is declared within the same block. If there are no blocks nested
within the declaring block, then a local identifier can only be
referenced by the block which declares it. Enclosing blocks cannot
access a local identifier.

An identifier is considered to be global to blocks which are nested
within the block in which the identifier is declared. If an
identifier is global to a particular block, then that block can
reference the identifier provided that it has not declared an
identifier of the same name. If a block declares an identifier with
the same name as a global identifier, then the global identifier is no
longer accessible from that block. Also, any further nested blocks
will not have access to the original global identifier.

Identifiers declared in the program block are accessible from any
place in a program because all other blocks are nested within the
program block. Therefore, identifiers declared in the program block
are global to all procedures and functions of the program.
Identifiers declared in a procedure or function are local to that
procedure or function. The only places in the program which can
access these identifiers are the procedure or function itself and the
procedures or functions, if any, which are nested within. The nested
procedures or functions can access only the global identifiers which
they do not declare themselves.

- 66 -

Procedures and Functions Chapter 9

A procedure or function declaration consists of a heading followed by
a block. It is important to note that the procedure or function name
of a heading is local to the block which declares it. The parameters
of the heading are local to the procedure or function itself. This
means for example that a procedure statement in the program block can
reference any procedure declared in the program block. However, a
procedure statement in the program block can not reference any
procedure declared within one of these procedures.

As an example of how scoping effects the accessibility of
identifiers, consider the sample diagram on the first page of chapter
2. The following table shows for each block of the diagram, the
procedures and functions which are callable from that block, and the
constants, types, variables, etc. which can be referenced by the
block.

Block accessible procedures
and functions

A B, D, F
--------- ----------------------------

B B, C, D, F
--------- ----------------------------

C B, C, D, F
--------- ----------------------------

D B, D, E, F
--------- ----------------------------

E B, D, E, F
--------- ----------------------------

F B, D, F

- 67 -

accessible constants,
types, variables, etc.

A

A, B

A, B, C

A, D

A, D, E

A, F

Procedures and Functions Chapter 9

B. FORWARD

The rule that an identifier must be declared before it is referenced
means that a procedure or function must be declared before it is
referenced by a procedure statement or by an expression with a
function reference. Some calling sequences that occur among a group
of procedures or functions make it impossible to obey this rule. For
example, if two procedures call each other, then you can not declare
one without referencing the other. The keyword FORWARD provides the
mechanism for getting around this problem. Using the keyword FORWARD
with just the heading for a procedure or function declaration signals
the compiler that the procedure or function block will be declared at
some later point in the program. If the procedure or function has
parameters, the parameters are declared as well. Then the procedure
or function which has been forward declared may be referenced.

Syntax of forward declaring a procedure or function:

heading ---
1

V

--> function

I
----> procedure heading----> FORWARD-->:-->

(See chapter 2 for the syntax of procedure and function headings)

The actual declaration of a forward declared procedure or function
can appear at some later place in the program. The place that it
appears must be at the same level and scope as its forward
declaration. The actual declaration consists of the heading with no
parameters, followed by the block. Since the parameters were declared
in the forward declaration, they must not be declared again in the
actual declaration.

If a forward declared procedure or function does not have its
actual declaration present, then it is treated as an external
procedure or function.

Example use of forward:

PROCEDURE abc(pl, p2: INTEGER): FORWARD:

PROCEDURE xyz;
VAR pl, p2 : INTEGER;
BEGIN
abc(pl,p2);
END;

PROCEDURE abc;
BEGIN

END;

- 68 -

Procedures and Functions Chapter 9

C. EXTERNAL

An external procedure or function can be declared in a program by
specifying its heading followed by the keyword EXTERNAL.

Syntax of externally declared procedures or functions:

note: EXTERN also accepted
--> function heading ---

1 t
-----> procedure heading-----> EXTERNAL-->;-->

Note:
for brevity the word "routine" will be used in place of
"procedure or function" in the following discussion.

The linking loader may be used to link separately compiled routines
to a program. By declaring a routine to be external, the actual
declaration does not have to appear in the program. This is very
useful when working with large programs. A large program may be
broken up into many routines which are declared as external. The
external routines can then be compiled individually. The linking
loader can then be used to link the compiled program to its
individually compiled routines. One advantage to this is that any
changes which are made to a particular routine will cause only that
routine to have to be recompiled. The linking process is then
repeated after the changed routine has been recompiled. Another
advantage is that slightly larger programs can be created by compiling
them in pieces and then linking the pieces together.

Perhaps one of most frequent use of external routines is to create a
file or library of commonly used routines. Then all the programs
which use the routines can link to them rather than having to declare
them in each program.

A compiler option must be used to compile a routine by itself. The
reason is that a routine by itself is not a legal Pascal program.
Therefore, a legal program must be constructed around the routine.
This would include a program heading, the environment of the routine,
the procedure or function declaration, and a statement body. The
environment consists of any constants or types which are in the scope
of and are used by the external routine. If global constants or types
are needed by the routine, they should be given the same names as
those used in the programs that use the routine. The scope refers to
the identifiers in a program which are accessible to the externally
declared routine.

- 69 -

Procedures and Functions Chapter 9

Variables can also be included in the environment but this is not
recommended. If an external routine needs to access a global
variable, the variable should be passed as a parameter to the routine.
Otherwise, extreme care must be taken to assure that the environment
around the external routine matches the environment of the programs
which use the routine. The statement body contains the compiler
option which is called "nullbody". The nullbody option tells the
compiler not to generate any code for the program. Only code for the
declared routine is generated.

The syntax for using the nullbody compiler option is shown in the
appendix along with all the other compiler options. An example using
global variables in an external procedure is also given.

Example use of external procedure:

sample: PROGRAM
CONST
TYPE
VAR xmin,xmax,ymin,ymax: REAL:

PROCEDURE axes(xmin,xmax,ymin,ymax: REAL): EXTERNAL:
BEGIN

axes(x.min,xmax,ymin,ymax):

END. C * sample*)

Separate compile of procedure axes:

PROGRAM axesroutine:
(*global environment, if any, goes
PROCEDURE axes(x.min,xmax,ymin,ymax

TYPE
VAR
BEGIN

END; (*procedure axes*)
BEGIN

(*$NULLBODY*)
END.

- 70 -

here*>
: REAL):

Procedures and Functions Chapter 9

D. Recursion

Pascal is a language which supports recursion. Recursion refers
to having more than one activation of a particular procedure or
function at the same time. There are two forms of recursion .
Direct recursion refers to a procedure or function that calls
itself. Indirect recursion refers to a procedure or function
that makes a call which eventually results in the procedure or
function being called again. An example of this is two procedures
that call each other. When writing recursive procedures, some
conditional statement must exist in the procedure to halt
the recursion at some point. Otherwise, there would be an endless
loop that would terminate only after the stack was exhausted
crashing the program. Recall that each activation of the
procedure results in space being allocated for its variables.

Example use of recursion :

PROCEDURE XYZ;
(*DECLARATION HERE*)

BEGIN

XYZ; (*PROCEDURE CALLS ITSELF*)

END;

- 71 -

Procedures and Functions Chapter 9

E. Predeclared Procedures and Functions

The predeclared procedures and functions are accessible from any
place in a program. They are declared in an imaginary block which
surrounds the program block. The names of predeclared procedures or
functions may be used as identifiers in programs. This means that the
name of a predeclared procedure or function may be used in a
declaration. If so, then the predeclared procedure or function whose
name is used in a declaration is no longer accessible to the program.
Its name is associated with the new declaration .

File Associated Procedures

RESET(£)

REWRITE(f)

PAGE(f)

CLOSE(f)

MESSAGE(s)

READ, READLN
WRITE, WRITELN

Positions the file pointer of the
specified file to the beginning for the
purpose of reading. If the file is empty,
then the function EOF becomes true, else
it is false.

Replaces the specified file with
an empty file . The file pointer
is positioned to the beginning of
the file.

Outputs a formfeed to the specified file.
Formfeeds cause skipping to the top of the
next page when the file is printed.

Closes the specified file. This procedure
may be used to explicitly close a file at
any time.

Outputs the specified string to the terminal.
sis char or array of char

Read data from a device
Write data to a device
(See chapter 10 for details)

- 72 -

Procedures and Functions Chapter 9

Arithmetic Functions

Operation Type of X Type of Result
--------- --------- --------------

ABS(x) absolute value integer, real same type as X

SQR(x) square integer, real same type as X

SIN(x) sine integer, real real

COS(x) cosine integer, real real

ARCTAN(x) arctangent integer, real real

EXP(X) natural (base e)
exponential integer, real real

LN(x) natural logarithm integer, real real

SQRT(x) square root integer, real real

Boolean Functions

ODD(x)

EOLN(x)

EOF(x)

Operation: Returns true if xis odd, else false
Type of x: integer
Type of result: boolean

Operation: Returns true if the end of a line
in the file has been reached

Type of x: text
Type of result: boolean

Operation: Returns true if the end of the file
has been reached.

Type of x: file
Type of result: boolean

- 73 -

Procedures and Functions Chapter 9

Transfer functions

TRUNC(x)

ROUND(x)

ORD(x)

CHR(x)

LOCATION(x)

SIZE(x)

HB(x)

LB(x)

Operation: Truncates a real value to its
integer part

Type of x: real
Type of result: integer

Operation: Rounds a real value to the
nearest integer

Type of x: real
Type of result: integer

Operation: Returns the ordinal number of x.
Type of x: any ordinal type
Type of result: integer

Operation: Returns the character whose ordinal
number is x

Type of x: integer
Type of result: char

Operation: Returns the address of variable x
Type of x: any type (may also be a procedure name)
Type of result: integer

Operation: Returns the size of type x in bytes
Type of x: any type identifier
Type of result: integer

Operation: Returns the high byte of x
Type of x: integer
Type of result: integer

Operation: Returns the low byte of x
Type of x: integer
Type of result: integer

Data transfer procedures

PACK(a,i,z) Operation: Copy the unpacked array a into the
packed array z. If the dimension of a
is m •• n and the dimension of z is u .. v
and n-m > v-u then the operation is
equivalent to:
for j:= u to v do z[j] := a[j-u+i]

UNPACK(z,a,i) Unpacks the above array.

- 74 -

Procedures and Functions Chapter 9

Dynamic allocation procedures

NEW{p) Allocates a new variable v and assigns the

pointer reference of v to the pointer variable
p. Tag field values may appear as parameters
to NEW but are non-functional.

DISPOSE{p) Releases the storage occupied by the variable
pointed to by p.

Other functions

SUCC(x)

PRED{x)

Operation: Returns the successor of x which is
next higher value in the enumeration
of which xis a member

Type of x: any ordinal type
Type of result: same type as x

Operation: Returns the predecessor of x which is
the next lower value in the enumeration
of which xis a member

Type of x: any ordinal type
Type of result: same type as x

Other procedures

ESCAPE Causes termination of a block just as if the
block end had been reached. If the block is
a procedure or function, then control returns to
the calling block. If the block is the program
block, then program execution is terminated.

note: IF files are declared locally within a procedure,
then the files must be closed using the procedure
CLOSE before calling ESCAPE. Normal termination
of a block results in files automatically being
closed.

- 75 -

Input and Ouput Chapter 10

INPUT AND OUTPUT

Input and output is the communication of a program to the external
environment. A program communicates to the external environment
through the use of logical files. Logical files are the variables in
a program which are declared as type FILE or TEXT. The logical files
are then associated with physical files. Physical files are the
actual devices of the computer system. A physical file could be a
disk file, a terminal, a printer, or some other device . The method
of associating logical files to physical files is discussed in the
System Implementation Manual.

Predeclared procedures and functions are provided for handling
input and output. These procedures and functions have a
characteristic unlike other procedures and functions. The number of
parameters passed to them can vary. They may be called with no
parameters or with several parameters. Since each input and output
routine performs an operation on a file, it must know which file to
operate on. If a routine is passed the logical file name, then it
operates on the specified file, otherwise it operates on a default
logical file. The two predeclared variables INPUT and OUTPUT are the
default logical files. They are both declared as type TEXT. The one
used as the default depends on the routine called. The input routines
default to INPUT and the output routines default to OUTPUT.

input

RESET
READ
READLN

I/O Routines

Procedures

output

REWRITE
WRITE
WRITELN
PAGE
MESSAGE

Functions

general EX)F
------- EX)LN

CLOSE

- 76 -

Input and Ouput Chapter 10

A file has associated with it a file pointer. The file pointer is
used to point to an individual component of a file. There are two
predeclared boolean functions which may be used to check the status of
a files pointer. Both functions may or may not take a logical file
name as a parameter. If no file parameter is passed, the default is
INPUT. The function EOF(file) returns the value TRUE if the pointer
is at the end of the file. Otherwise, the value returned is FALSE.
The function EOLN(file) can only be used with files of type TEXT. It
returns the value TRUE when the files pointer is at the end of a line.
Otherwise, the value returned is FALSE.

Syntax of function EOF or EOLN: (default: file• INPUT)

--> EOLN

I I
V -----> EOF---------->

Examples of using EOF and EOLN:

WHILE NOT EOF(datain) DO
BEGIN
WHILE NOT EOLN(datain) 00

BEGIN
READ(ch);

END;

END;

A. RESET

I
V

-->file--> > --->

IF EOF THEN quit
ELSE

READ (number) ;

The RESET procedure opens a file so that it can be read. No
input can be received from a file without this operation first being
performed.

Syntax of RESET: (default: file= INPUT)

I
V

-->RESET---> (-->file-->)--->

- 77 -

Input and Ouput Chapter 10

The procedure positions the file pointer to the beginning of the
file. If the file is empty, then the function EOF(file) becomes TRUE.
If the file is not empty, then the function EOF(file) becomes FALSE.

The statement RESET(INPUT) is implicitly executed at the beginning of
a program unless the NO INOUT compiler option is used. Therefore,
it is not necessary for a program to explicitly open the default logical
file INPUT.

Example use of RESET:

PROGRAM readdata;
VAR datain: TEXT;
BEGIN

RESET(datain); (*open file datain for reading*)

END.

Input and output to files is buffered. This is to prevent having to
access a physical device every time an operation is performed. Each
file used by a program has an associated buffer. Unlike standard
Pascal, the input buffer of a file is not filled when a reset is
performed. The input buffer becomes filled the first time a READ,
READLN, EOLN, or EOF is performed on the file. This prevents the
normal problems associated with reading from a terminal. Programs can
have their logical files remapped from a disk file to a terminal
without modification to the program itself.

(See the System Implementation Manual for a description
of how to associate logical files to physical files)

B. REWRITE

The REWRITE procedure opens a file so that it can be written. No
output can be sent to a file without this operation first being
performed.

Syntax of REWRITE: (default: file= OUTPUT)

I
V

-->REWRITE---> (-->file-->) --->

- 78 -

Input and Ouput Chapter 10

The procedure positions the file pointer to the beginning of the
file. The file becomes empty when this happens. This means that any
data in the file is lost.

The statement REWRITE(OUTPUT) is implicitily executed at the
beginning of a program unless the NO INOUT compiler option is used.
Therefore, it is not necessary for a program to explicitly open the
default logical file OUTPUT.

C. READ

The READ procedure assigns the value of components of a file to
variables.

Syntax of READ: (default: file= INPUT)

, <---
I

V V
-->READ--> (--->file-->,-------> variable--->>-->

The number of variables passed to the procedure determines the number
of components read from the file. The components refer to the way the
file is logically separated into individual data elements. Each
component is of some data type which defines its size. Reading begins
with the component pointed to by the file pointer. The first variable
specified is assigned the value of this component and then the file
pointer is advanced to the next component. This process is continued
until all the variables specified are assigned values. The type of
each variable must match the type of the file component being assigned
to it.

Text files

If the file is of type TEXT, the variables can be type REAL, INTEGER,
subrange of integer, CHAR, or strings. Strings are declared as single
dimensioned packed arrays of the type CHAR. These types can be
intermixed as components of text files. Then they may be read by
specifiying variables which match in type and order, the components of
the file.

Note: The following characters have special meaning in a text file and
may not be read as single characters. Use FILE OF CH.AR to avoid
this special processing •.

HT
LF
CR
SUB

-->
-->
-->
-->

109
IOA
fOD
tlA

- 79 -

Input and Ouput Chapter 10

If the variable is of type CHAR; then a single character is read from
the file. If the variable is an array of CHAR, then the dimension of
the array determines the number of characters read from the file. If
an end of line or file mark is encountered before the array is full,
then the characters read up to that point are left justified in the
array and the remaining elements are filled with blanks. Integer and
real numbers are represented in files as strings of characters.
Individual numbers in a file are separated by blanks or by an end of
line mark. When a number is read, the character string representing
the number is automatically converted to its real or integer value
before being assigned to the variable. With text files, consecutive
read operations automatically skip end of line marks when reading
integer, real, or boolean variables. When reading character or string
variables, the end of line mark is not skipped. In this case, the
procedure REAOLN must be executed to cause the file pointer to advance
to the next line.

Example use with text files:

Consider the following file of data:

SAM JONES
MARY SMITH

25
23

and the declarations:

183.5
105.4

369
356

VAR name : PACKED ARRAY[l •• 10) OF CHAR;
number, total INTEGER;
score
students

: REAL;
: TEXT;

If the file pointer of •students• points to the
beginning of a line (it does immediately after a RESET)
then:

READ(students,name,number,score,total)

would assign a string, integer, real, and integer value to
the 4 specified variables. The file pointer would then point
to the character immediately following the last value read.

- 80 -

Input and Ouput Chapter 10

Non-text files

If the file is not of type TEXT, then all components of the file are
of the same type. The components of a file may be declared to be of
any type except the type FILE or structured types containing a
component of type FILE. This means for example, that you could
declare a file of records. Then an entire record can be read into a
variable of the same record type. This however, requires that the
file of records has previously been created through the use of the
procedure WRITE. The reason for this is that all files which are not
of type TEXT are read and written in ·binary form.

Example use with non-text files:

assume the following declarations:

TYPE

VAR

then:

food= RECORD
fruit : (orange, grape, apple);
vegetable: (corn, okra, beans);
cost INTEGER;
END;

groceries
item

FILE OF food;
food;

READ(groceries, item)
would assign one record from the file to the variable "item".

Care should be taken not to read past the end of a file. The
function EOF is provided for preventing this from occuring. The
program will not abort if you try to read past the end of file, but
the value assigned to the variable will be some unknown value.

D. WRITE

The procedure WRITE appends values to a file. The number of values
passed to the procedure determines the number of values output to the
file. If a file is declared as type TEXT, then output values can be
specified as strings or expressions. If a file is declared as a type
other than type TEXT, then the output values are restricted to
variables of the same type only.

- 81 -

Input and Ouput Chapter 10

Syntax of WRITE:

For non-text files:
, <----

! I
-->WRITE--> (-->file-->,---> variable--->) -->

For text files: (default: file= OUTPUT)

--------------- --------
I I
V V

-->WRITE--> (--->file-->,-----> write parameter--->) -->

, <--------
1

Syntax of write parameter:

--> real expr

--> integer expr

I
-->:-->integer expr ------>:-->integer expr --

1
V

--> boolean expr ---l ,----------------------1
V

----> string ------->:-->integer expr ------------------------>

Syntax of string: (string variable= packed array of char)

string variable-------

------, <----

! I V
---> ' --->character--->' --->

- 82 -

Input and Ouput Chapter 10

Text files

If the file is of type TEXT, then the values output to the file may
be specified as strings or as boolean, integer, or real expressions.
If a string is specified, then the characters of the string are output
to the file. If a boolean expression is specified, then either the
characters 'TRUE' or 'FALSE' are output to the file depending on the
value of the expression. If an integer or real expression is
specified, then the value of the expression is converted to a
character string before being output to the file. An integer
expression may be output in hexadecimal or decimal base
representation.

The number of characters to output for a value can be specified by an
integer expression which follows the value, separated by•:•. If the
number of characters is not specified for a particular value, then a
default number of characters will be output.

---For a string---
If the number is less than the length of the string, then all the

characters of the string are output. If the number is greater than
the length of the string, then blanks will be appended to the string .
The default number is the length of the string.

Example: WRITE(' literal string' : 20)

---For a boolean expression---
The same rule applies for the strings 'FALSE' and 'TRUE'.

Example: WRITE(a AND b: 10)

---For an integer expression---
!£ the number is less than the number of digits in the integer, then

all the digits are output. If the number is greater than the number
of digits, then the excess characters are output as blanks before the
integer is output. The default number of digits for integers is 8.
An integer value may be written in hexadecimal base format by
specifying width HEX

Example: WRITE(outfile, n+5 :i, j :4 HEX)

---For a real expression---
Two numbers may be specified for real values. The first number

specifies the total field width. The second specifies the number
of digits after the decimal point. If both are specified, the
the number will be written in fixed format. Otherwise, the number
will be written in exponential format. The default field width for
single precision is 12. The double precision default is 20.
The maximum field width is 32.

Example: WRITE(2.5*random :5, random/x:9:6)

- 83 -

Input and Ouput Chapter 10

Non-text files

If the file is not of type TEXT, then output values must be
variables. Output directed to non-text files is in binary form.
means that values are output in the same form as they are stored.
example, an integer is not converted to a character string before
is output.

Example use with non-text files:

WRITE(groceries,item)

E. READLN

This procedure can be used only with files of type TEXT. (See
section C.l of chapter 4 for a description of text files.)

This
For

it

The READLN procedure is similar to the READ procedure. The
difference is that at the end of the read operation, the file pointer
is advanced to the beginning of the next line.

Syntax of READLN: (default: file= INPUT)

--------------- -----, <----
v t I V

--> READLN ---> (--->file--->,-----> variable----->)--->

I
The READLN procedure may be called without passing any variables to

be read. When no variables are specified, then the procedure just
advances the line pointer to the beginning of the next line.

The statement: READLN(varl,var2,var3)
is equivalent to: BEGIN READ(varl,var2,var3); READLN END

- 84 -

Input and Ouput Chapter 10

The function EOLN can be used to determine whether or not a files
pointer is at the end of a line.

Example use of READLN:

i :: 0;
WHILE NOT EOF DO

BEGIN
i :: i+l;
READLN(a[i]> (*reads one value from each line*)

END:

WHILE NOT EOF (infile) DO
BEGIN
WHILE NOT EOLN(infile) 00

BEGIN
READ(infile,ch):

END:
READLN(infile): (*advances file pointer to next line*)
END:

F . WRITELN

This procedure can only be used with files of type TEXT. (See
section C.l of chapter 4 for a description of text files).

The WRITELN procedure is similar to the WRITE procedure. The
difference is that at the end of the write operation, an end of line
mark is appended to the file.

Syntax of WRITELN: (default: file: OUTPUT)

, <-------

vi I V
--> WRITELN ---> (--->file --->,----->write parameter--->)--->

I
(See WRITE for syntax of write parameter)

- 85 -

Input and Ouput Chapter 10

The WRITELN procedure may be called without passing any values to
written. When no values are specified, then the procedure just
appends an end of line mark to the file.

The statement: WRITELN(varl,var2,var3)
is equivalent to: BEGIN WRITE(varl,var2,var3); WRITELN END

Example use of WRITELN:

(*writes 2 values on each line*)
FOR k := l TO 100 DO WRITELN(a[k],b[k]);

FOR j := l TO maximum DO
BEGIN
i := 0;
REPEAT

i := i+l;
WRITE(number[j]);

UNTIL (i 2 S) OR (number[j]>l00);
WRITELN; (*advance file pointer to next line*)
END;

G. CLOSE

The use of the CLOSE procedure will assure that file data will not
be lost if the program abnormally terminates and does not properly
close the file. The CLOSE procedure must be used with files which are
components of structured variables. (see the appendix)

Syntax of CLOSE:

-->CLOSE--> (-->file-->) -->

- 86 -

Input and Ouput Chapter 10

H. PAGE

The PAGE procedure appends a formfeed to a file. Formfeeds cause
printers to skip to the top of the next page. This procedure provides
a way of controlling the number of lines printed on a page.

This procedure may only be used with files of type TEXT.

Syntax of PAGE: (default: file= OUTPUT)

I
V

-->PAGE---> C -->file-->)--->

I. MESSAGE

The procedure MESSAGE may be used to output strings to the terminal.
It takes one parameter which is either a string constant or variable.
A string constant is a sequence of characters enclosed in single
quotes. A string variable is a variable declared as a packed array of
characters.

Syntax of MESSAGE:

-->MESSAGE--> C -->string-->) -->

Programs which require only string output to the terminal can use
this procedure rather than the WRITE procedure.

Example use of MESSAGE:

MESSAGE(' time to quit');

MESSAGE(string);

- 87 -

APPENDIX

A. COMPILER OPTIONS

Compiler options are provided to change the behavior of the Pascal
compiler. These options allow features to be enabled or disabled and
can alter the code generated at compile time.

Compiler options are specified in comments . A comment that
contains a dollar sign as the first character specifies an option.
All compiler options have two states, on and off. An option is turned
on by placing its name after the dollar sign. If the option name is
preceded by the word "NO•, then the option is turned off. Except
where noted, the options may appear any place in a program.

DOUBLE

This option specifies that all real variables within the program
should be double precision. This option must precede the program
statement. If it occurs anywhere else in the program, it will be
ignored. If the option is off (the default), then real variables are
single precision.

Example:

(*$DOUBLE*)
PROGRAM DBL:
VAR

R: REAL;
BEGIN
END.

In this program, the variable •R• will be declared as double
precision.

- 88 -

FORDECL

This option is used to change the behavior of loop counters in FOR
statements. If the option is turned on(default is off), then all FOR
loop counters are treated as temporary variables. They do not need to
be declared, and even if a declaration is present, a new variable is
used rather than the declared variable. These FOR loop counters are
defined only within the loop and disappear when the loop is exited.

Example:

PROGRAM FORLOOP;
(*$FORDECL*)
VAR

A, I : INTEGER;
BEGIN

A := 0;
I := 0;
FOR I := 0 TO 4 DO A:= A+ I;
WRITELN(OUTPUT,I,A);

END .

In the above program, the I used as a FOR loop counter is a different
variable from the I declared in the VAR section. When the write
statement is executed, the values O and 10 will be printed.

INOUT

This option enables the predeclared files: INPUT and OUTPUT(default
is on). If this option is turned off before the PROGRAM statement,
then the files input and output will not be declared. This option
prevents the reset of INPUT and the rewrite of OUTPUT and can be used
to avoid the prompts •INPUT 2 • and •ouTPUT 2 • when a program is run.

Example:

(*$NO INOUT*)
PROGRAM NOPROMPTS;
BEGIN

MESSAGE('! WAS NOT PROMPTED FOR INPUT AND OUTPUT')
END.

- 89 -

IF

The if option provides conditional compilation. The word IF is
followed by the name of a boolean constant. If the constant has the
value "TRUE", then compilation continues as if the option had not been
present. If the constant has the value "FALSE" then compilation stops
at that point, and all text is treated as comments until a (*$NO IF*)
is encountered. Note that IF options do not nest. That is, an IF
option should not occur within the scope of another if option. The if
option can be used to configure a program for different environments
with minimum changes to the source. It is also useful for removing
debugging statements once the program is working properly.

Example:

PROGRAM Test;
CONST

debug= false;

FUNCTION FACTORIAL(! : INTEGER) REAL;
BEGIN

IF I= 0 THEN FACTORIAL:~ 1
ELSE BEGIN

(*$IF DEBUG*)
WRITELN(OUTPUT, 'CALLING FACTORIAL(• ,I-1, • > •);
(*$NO IF*)
FACTORIAL := I * FACTORIAL(I-1);
END;

END; (*FACTORIAL*)

BEGIN
WRITELN(OUTPUT, 'FACTORIAL(20)=',FACTORIAL(20));

END.

In the above program, the write statement within the recursive
function FACTORIAL could be turned on during debugging by setting
debug to TRUE. Once the program is running, it can be recompiled with
debug set to FALSE. The write statement will be effectively removed.
In fact, since no code is generated for it, the resulting object
program will be shorter. This has the same effect as removing the
statement with an editor or placing open and close comments arround
it. The advantage is that many statements can be disabled or enabled
with a single change to the source program. Also, it is simple to
reenable debugging statements should it become necessary in the
future.

- 90 -

NULLBODY

The nullbody option is used to disable code generation for a
procedure, function or program. The nullbody option should occur
after the BEGIN that starts the block and before any executable
statements. Nullbody will prevent code from being generated and can
be used when procedures are being compiled separately. Since every
program must have a program statement and a main program body, it is
necessary to use nullbody to disable code generation for the main
program when a subroutine library is being compiled.

For example:

PROGRAM SUBLIBRARY;
TYPE

STRING= PACKED ARRAY[l •. 80] OF CHAR;

PROCEDURE CONCATENATECVAR Sl, S2, RESULT: STRING);
BEGIN

(* BODY OF CONCATENATE*)
END;

PROCEDURE MID$(VAR S:
VAR RESULT

BEGIN
(* BODY OF MID$*)

END;

BEGIN
(*$NULLBODY*)

END.

STRING; FIRST, LAST: INTEGER;
STRING);

If the above program is compiled, the object file will contain code
only for the two procedures: CONCATENATE and MID$. There will be no
main program. This allows these procedures to be linked to another
program.

- 91 -

INCLUDE

The include option is used to specify within a program,
the name of a file which contains Pascal statements which you
want included in the compilation process. When the compiler
encounters an include option, it opens the specified file and
compiles all the Pascal source in the file before continuing
compilation of the current file. The include option allows you
to include commonly used routines or declarations in a program
without actually having the code present. You simply tell the
compiler the name of the file containing the Pascal statements
and it will include those statements as it compiles.

The include options may be nested. That is, you may include
a file which also contains an include compiler option. There is
no limit to the number of nested includes. However, the
the compiler must maintain a file descriptor for each file that
is open at any given time. The file descriptors are allocated
memory from the heap. If too many files are open at a time, the
compiler may run out of heap during the compile process.

Example use of the INCLUDE option:

PROGRAM sample:
{DECLARE contains the declarations for this program}
(*$INCLUDE 'DECLARE'*) {note the quotes}
BEGIN

{BODY contains the statement body for this program}
(*$INCLUDE 'BODY'*)

END.

- 92 -

LIST

The list option allows you to turn the compiler listing
on and off within a program. The default is on. Therefore,
the compiler will by default generate a listing which contains
all the lines of a program. If it is desired to discard some
of the lines of a program from the compiler generated listing,
(*$NO LIST*) may be used to tell the compiler to discard all
subsequent lines of the program from the listing. The compiler
does not stop compiling subsequent lines, it just does not
output them to the listing. Object code is still generated.
If you wish to turn the compiler listing back on, then (*$LIST*)
tells the compiler to start outputting all subsequent lines to
the listing again.

The LIST option may be useful when compiling frequently used
routines which you know will compile correctly. It provides
a method to shorten compiler listings, saving paper when
printing, and making it easier to locate other procedures or
functions by uncluttering lengthy program listings.

Example using the compiler LIST option:

PROGRAM sample;
VAR ...

PROCEDURE useoften;
(*$NO LIST*) {turn off listing for useoften}
VAR •••
BEGIN

END;
(*$LIST*)
BEGIN

END.

{end of procedure useoften}
{turn listing back on for program}
{beginning of main program}

- 93 -

PAGESIZE

The listing generated by the compiler has printer control
information (formfeed) between each page. The compiler outputs
a formfeed (hex OC) to the listing every 62 lines. The
formfeed causes most printers to advance the paper to the top
of the next page. The PAGESIZE option allows you to change the
number of lines that the compiler will output to the listing
between formfeeds. The actual number of lines output between
formfeeds is 2 more than the number specified by the PAGESIZE
option. This is to allow for the heading.

Most operating systems control paging when outputting data
to a line printer. The operating system itself maintains a
line counter and outputs a formfeed to the line printer after
so many lines have been sent to the printer. A command is
typically provided to set the number of lines per page or to
turn paging control off entirely. If the operating system is
controlling paging, the listing generated by the compiler may
not be paged properly (ie. the compiler heading may not appear
at the top of each page). The number of lines per page used
by the operating system should be equal to the number of lines
per page used by the compiler, or the operating system paging
must be turned off, if compiler generated listings are to be
printed properly.

Example use of the compiler PAGE option:

(*$PAGESIZE 50*) {set the number of lines/page to 50}
PROGRAM sample;
{the operating system paging should be set to 52
or be turned off entirely}

BEGIN

END.

- 94 -

WIDELIST

The compiler now generates line numbers for each line of
a listing. The WIDELIST option is used to specify that you
want the compiler to additionally generate hexadecimal addresses
which show the location of the object code for a particular line
relative to the start of the procedure, function, or program in
which the line appears . This information is useful when used in
conjunction with the linking loader to determine the location
within a program of a fatal error. You may use the S command of
the linking loader to display the starting address of each
routine loaded. Then use the R command to run the program.
When the program terminates with a fatal error, the absolute hex
address of the error is displayed. You may use this address
along with the addresses displayed by the S command to determine
in which routine the error occurred. By subtracting the address
of the error from the starting address of the routine in which
the error occurred, you obtain the relative address of the error
within that routine. This address corresponds to the address
printed on the listing.

Example use of the compiler WIDELIST option:

C*$WIDELIST*) {tell the compiler to print hex addresses}
PROGRAM sample;

BEGIN

END .

- 95 -

RANGECHK

A common error which occurs in programs which utilize arrays
is to index the array with a value which is outside the array
bounds Ceg. an array with bounds 1 •• 10 is indexed with the value
11). A common error in programs which utilize subranges is
to assign a value which is outside the subrange (eg. a variable
is declared as type 0 •• 255 and is assigned the value 275). A
common error in programs which utilize enumerations is to
increment or decrement past the first or last value of the
enumeration (eg. SUCC(color) is executed when color is equal to
blue and color is of type (red, green, blue)).

All of these errors may be trapped, causing an appropriate
runtime error message to be displayed when such an error occurs
during program execution. The RANGECHK option tells the
compiler to generate extra code to detect and report errors of
the above type when the compiled program is executed.

Since the RANGECHK option does cause additional object code
to be generated, you should generally use it only during the
debugging stage of program development. The RANGECHK option may
be turned on and off throughout a program. The default is off.
The IF compiler option may be used to conditionally turn the
RANGECHK option on and off as needed for debugging purposes.
Example use of the compiler RANGECHK option:

PROGRAM sample;
VAR A,B: ARRAY[l .. 200] OF CHAR;

J, K : INTEGER;

BEGIN
WRITE(OUTPUT,'Enter size of array: ');
C*SRANGECHK*) {turn range checking on}

FORK:= 1 TO J DO A[K] := B[K+l];
(*$NO RANGECHK*) {turn range checking off}

END .

Note: The RANGECHK option will not detect an error on
subrange variables which are assigned invalid values
via a read statement. To trap these errors, you
must assign the read in value to a subrange variable.

READ (VALUE);
SUBRANGE VARIABLE:= VALUE;

- 96 -

PTRCHECK

A common error which occurs in programs which utilize
dynamic pointer variables is the inadvertent assignment of
the value NIL to a pointer and then the subsequent attempt
to use the value pointed to in an expression or in an
assignment to a static variable. Another common error is the
attempt to utilize an uninitialized pointer. An uninitialized
pointer may not point to a location within the allocated heap
of the program. It may point into the executing code of
the program, making it possible to write data over the
instructions, causing very unpredictable results.

The PTRCHECK option is used to tell the compiler to generate
extra code in the compiled program to detect and report either
of the above types of errors when the program executes. This
extra code causes the program to terminate and display an
appropriate error message when an invalid use of a pointer
variable is detected. The PTRCHECK option may be turned on and
off throughout a program. The default is off.

Example use of the compiler PTRCHECK option:

PROGRAM sample;
TYPE customer 2 RECORD name,add
VAR cust : Acustomer;
BEGIN

(*$PTRCHECK*)

WHILE cust<>NIL DO

END.

- 97 -

ARRAY[l •• 9) OF CHAR END ;

B. ERROR MESSAGES

B.l Compiler Error Codes

2 IDENTIFIER EXPECTED
3 'PROGRAM' EXPECTED
4 ') ' EXPECTED
5 ': ' EXPECTED
6 ILLEGAL SYMBOL
8 'OF' EXPECTED
9 1 C ' EXPECTED

10 ERROR IN TYPE
11 LEFT BRACKET ' (' OR ' C.' EXPECTED
12 RIGHT BRACKET']' OR'.)' EXPECTED
13 'END' EXPECTED
14 ';' EXPECTED
15 INTEGER EXPECTED
16 '=' EXPECTED
17 'BEGIN' EXPECTED
20 ', ' EXPECTED
22 ' •• ' EXPECTED
23 '.' EXPECTED
49 'ARRAY' EXPECTED
50 CONSTANT EXPECTED
51 '::a:' EXPECTED
52 'THEN' EXPECTED
53 'UNTIL' EXPECTED
54 '00' EXPECTED
55 'TO'/'OOWNTO' EXPECTED
57 'FILE' EXPECTED
58 INVALID OR MISSING OPERAND IN AN EXPRESSION
62 DECIMAL PLACE ALLOWED ONLY FOR REAL
66 TYPE IDENTIFIER EXPECTED
80 OPEN COMMENT WITHIN A COMMENT
81 UNKNOWN OPTION
82 I REQUIRES A 2 CHARACTER HEX VALUE OR II

101 IDENTIFIER DECLARED TWICE
102 LOWER BOUND EXCEEDS UPPER BOUND
103 IDENTIFIER IS NOT OF APPROPRIATE CLASS
104 UNDECLARED IDENTIFIER
105 CLASS OF IDENTIFER IS NOT VARIABLE
107 INCOMPATIBLE SUBRANGE TYPES
113 ARRAY BOUNDS MUST BE SCALAR
117 UNSATISFIED FORWARD REFERENCE TO A TYPE IDENTIFER OF A POINTER
119 ';' EXPECTED (PARAMETER LIST NOT ALLOWED)
120 FUNCTION RESULT MUST BE SCALAR, SUBRANGE, OR POINTER
123 FUNCTION RESULT EXPECTED
126 IMPROPER NUMBER OF PARAMETERS
127 TYPE OF ACTUAL PARAMETER DOES NOT MATCH FORMAL PARAMETER
129 TYPE CONFLICT OF OPERANDS IN AN EXPRESSION
132 COMPARISON WITH'>' OR'<' NOT ALLOWED ON SETS
134 ILLEGAL TYPE OF OPERANDS
135 TYPE OF EXPRESSION MUST BE BOOLEAN

- 98 -

136 SET ELF.MENT TYPE MUST BE SOME ENUMERATION TYPE
138 TYPE OF VARIABLE IS NOT ARRAY
140 TYPE OF VARIABLE IS NOT RECORD
141 TYPE OF VARIABLE IS NOT POINTER
148 SET BOUNDS OUT OF RANGE
152 NO SUCH FIELD IN THIS RECORD
154 ACTUAL PARAMETER MUST BE A VARIABLE
156 MULTIDEFINED CASE LABEL
161 PROCEDURE OR FUNCTION ALREADY DECLARED AT A PREVIOUS LEVEL
165 LABEL ALREADY DEFINED
167 UNDECLARED LABEL
168 LABEL NOT DEFINED
182 "FOR" EXPRESSION MUST BE OF SOME ENUMERATION TYPE
183 "CASE" EXPRESSION MUST BE OF SOME ENUMERATION TYPE
184 "FOR" VARIABLE MUST BE LOCAL
185 OPERATION DEFINED FOR TEXT ONLY
186 OPERATION NOT DEFINED FOR TEXT FILES
193 ACCESS STATEMENT MISSING FOR COMMON
199 FEATURE NOT IMPLEMENTED
202 STRING CONSTANT CANNOT SPAN LINES
203 INTEGER CONSTANT TOO LARGE
210 FIELD WIDTH MUST BE INTEGER
211 FRACTION LENGTH MUST BE OF TYPE INTEGER
212 HEX FORMAT ALLOWED ONLY FOR TYPE INTEGER
219 PARAMETER MUST BE OF TYPE FILE
220 PARAMETER MUST BE OF TYPE INTEGER
223 PARAMETER MUST BE OF TYPE POINTER
230 ILLEGAL TYPE OF PARAMETER IN STANDARD PROCEDURE CALL
250 TOO MANY NESTED SCOPES - LIMIT IS 15
401 OPEN COMMENT ENCOUNTERED IN A COMMENT
403 TO MANY PROCEDURE NESTING LEVELS
404 ARRAY BOUNDS MUST BE SCALAR

- 99 -

B.2 Runtime Error Codes

01) OUT OF
cause:
cure:

02) OUT OF
cause:
cure:

STACK
insufficient
If compiling
with PASCAL
with PASCALB

If executing
with RUN

with /CMD

amount of stack available

: switch to PASCALB
specify more stack space
PASCALB <stack> file

: specify more stack space
RUN file stack

: specify more stack space
command of LINKLOAD

when using B

amount of heap available
HEAP
insufficient
If compiling
with PASCAL
with PASCALB:

switch to PASCALB
specify less stack space

If executing
with RUN
with /CMD

: specify less stack space
: specify less stack space when using B

command of LINKLOAD

03) BAD POINTER
cause: damaged object file or error in program which causes

executing code to be overwritten with data
cure: If executing one of the system /CMD files:

restore defective /CMD file from the original master
disk.

If executing a user written program:

04) BAD LEVEL
see error 03

05) DIVIDE BY 0

recompile the program using the RANGECHK and
PTRCHECK options and execute once again. Invalid
array indexing and most invalid pointer referencing
will be trapped. If a range or pointer error
message is displayed, locate and fix the programming
error.

cause: an integer or real divide operation with a divisor of O
cure: prevent divisor from becoming 0

06) UNDEFINED PCODE
see error 03

07) INVALID SET
cause: set operation results in set with more than 256 members
cure: restrict s e t operations to 256 member sets

08) BAD RUNTIME CALL
see error 03

- 100 -

09) IO ERROR
cause : 1 - file does not exist

2 - disk is full
3 - bad disk or hardware

cure : 1 - specify correct file name
2 - clear some space on the disk
3 - run diagnostics

0A) SET ELEMENT TOO LARGE
cause: attempt to assign an ordinal value> 256 to a set
cure: limit sets to 256 members

10) RANGE CHECK
cause: invalid array index, subrange value, or enumeration value
cure : correct invalid array indexing and/or invalid values

11) BAD DIGIT IN NUMBER
cause: attempt to read or DECODE an invalid number
cure: make sure all numbers read or decoded are legal numbers

12) PUT ERROR
cause: attempt to output an undefined file buffer variable
cure: assign a proper value to the file buffer variable

13) OVERFLOW
cause: a real arithmetic calc ulation overflows
cure: limit real numbers to the maximum size

15) UNDERFLOW
cause: a real divide operation causes underflow
cure: limit real numbers to the minimum non-zero size

16) LOG NEGATIVE
cause: attempt to take the natural log of a number<= 0
cure: log is valid positive numbers only

17) SQRT,x-y NEGATIVE
cause: attempt to take the square root of a negative number or

attempt to raise a negative number to a real power
cure: square root is valid only for number >~0

only positive numbers may be raised to a real power

EB) ATTEMPT TO WRITE TO INPUT FILE
cause: opening an output file using RESET
cure: open the output file using REWRITE

EC) FILE NOT OPEN
cause: attempt to read or write an unopened file
cure: open the file using RESET or REWRITE

ED) ATTEMPT TO READ OUTPUT FILE
cause: opening an input file using REWRITE
cure: open the input file using RESET

EE) NO MEMORY FOR FILE BUFFER
cause: not enough space for file buffer in heap
cure: execute program using less stack

- 101 -

Decimal

o.
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36 .
37.
38.
39.
40.
41.

C. Standard 7-bit USASCII Character Set

Octal

000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047
050
051

Hex

00
01
02
03
04
05
06
07
08
09
OA
OB
oc
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
lA
1B
lC
10
lE
lF
20
21
22
23
24
25
26
27
28
29

Graphic

-@
-A
-s
-c
-o
-E
-p
-G
-H
-1
-J
-K
-L
-M
-N
-o
-p
-o
-R
-s
-T
-u
-v
-w
-x
-y
-z
-c
-\
-1

•
I
$
%
&

Name

NUL (used for padding) <null>
SOH (start of header)
STX (start of text)
ETX (end of text)
EOT (end of transmission)
ENQ (enquiry)
ACK (acknowledge)
BEL (bell or alarm)
BS (backspace) <bs>
HT (horizontal tab) <tab>
LF (line feed) <lf>
VT (vertical tab)
FF (form feed, new page) <ff>
CR (carriage return) <er>
SO (shift out)
SI (shift in)
OLE (data link escape)
DCl (device control 1, XON)
DC2 (device control 2)
DC3 (device control 3, XOFF)
DC4 (device control 4)
NAK (negative acknowledge)
SYN (synchronous idle)
ETB (end transmission block)
CAN (cancel)
EM (end of medium)
SUB (substitute)
ESCAPE (alter mode, SEL) <esc>
FS (file separator)
GS (group separator)
RS (record separator)
US (unit separator)

space or blank <sp>
exclamation mark
double quote
number sign (hash mark)
dollar sign
percent sign
ampersand sign
single quote (apostrophe)
left parenthesis
right parenthesis

- 102 -

42. 052 2A * asterisk (star)
43. 053 2B + plus sign
44. 054 2C , comma
i4s. 055 20 minus sign (dash)
46. 056 2E . period (decimal point)
47. 057 2F I <right) slash
48. 060 30 0 numeral zero
49. 061 31 1 numeral one
so. 062 32 2 numeral two
51. 063 33 3 numeral three
52. 064 34 4 numeral four
53. 065 35 5 numeral five
54. 066 36 6 numeral six
55. 067 37 7 numeral seven
56. 070 38 8 numeral eight
57. 071 39 9 numeral nine
58. 072 3A . colon .
59. 073 3B . semi-colon ,
60. 074 3C < less-than sign
61. 075 3D = equal sign
62. 076 3E > greater-than sign
63. 077 3F ? question mark
64. 100 40 @ atsign
65. 101 41 A upper-case letter ABLE
66. 102 42 B upper-case letter BAKER
67. 103 43 C upper-case letter CHARLIE
68. 104 44 D upper-case letter DELTA
69. 105 45 E upper-case letter ECHO
70. 106 46 F upper-case letter FOXTROT
71. 107 47 G upper-case letter GOLF
72. 110 48 H upper-case letter HOTEL
73. 111 49 I upper-case letter INDIA
74. 112 4A J upper-case letter JERICHO
75. 113 4B K upper-case letter KAPPA
76. 114 4C L upper-case letter LIMA
77. 115 4D M upper-case letter MIKE
78. 116 4E N upper-case letter NOVEMBER
79. 117 4F 0 upper-case letter OSCAR
80. 120 so p upper-case letter PAPPA
81. 121 51 0 upper-case letter QUEBEC
82. 122 52 R upper-case letter ROMEO
83. 123 53 s upper-case letter SIERRA
84. 124 54 T upper-case letter TANGO
85. 125 55 u upper-case letter UNICORN
86. 126 56 V upper-case letter VICTOR
87. 127 57 w upper-case letter WHISKY
88. 130 58 X upper-case letter XRAY
89. 131 59 y upper-case letter YANKEE
90. 132 SA z upper-case letter ZEBRA

- 103 -

91. 133 SB [left square bracket
9 2. 134 SC \ left slash (backslash)
93. 135 SD] right square bracket
9 4. 136 SE uparrow (carat)
9 5. 137 SF underscore
9 6. 140 60 -;--

(single) back quote
9 7. 141 61 a lower-case letter able
98. 142 62 b lower-case letter baker
99. 143 63 C lower-case letter charlie

100. 144 64 d lower-case letter delta
101. 145 65 e lower-case letter echo
102. 146 66 f lower-case letter foxtrot
103. 147 67 g lower-case letter golf
104. 150 68 h lower-case letter hotel
105. 151 69 i lower-case letter india
106. 152 6A j lower-case letter jericho
107. 153 6B k lower-case letter kappa
108. 154 6C 1 lower-case letter lima
109. 155 6D m lower-case letter mike
110. 156 6E n lower-case letter november
111. 157 6F 0 lower-case letter oscar
112. 160 70 p lower-case letter pappa 113. 161 71 q lower-case letter quebec
114. 162 72 r lower-case letter romeo
115. 163 73 s lower-case letter sierra
116. 164 74 t lower-case letter tango
117. 165 75 u lower-case letter unicorn
118. 166 76 V lower-case letter victor
119. 167 77 w lower-case letter whisky
120. 170 78 X lower-case letter xray
121. 171 79 y lower-case letter yankee
122. 172 7A z lower-case letter zebra
123. 173 7B { left curly brace
124. 174 7C I vertical bar
125. 175 7D } right curly brace
126. 176 7E tilde
127 . 177 7F <rubout> DEL

- 104 -

D. Differences from Standard

The standard used is defined by "User Manual and Report", second
edition, Jensen and Wirth, Springer-Verlag. The following sections
pertain to the differences in Alcor Systems implementation of Pascal
as compared to the standard. The extensions are added to provide
extra power to the language. All implementations of Pascal by Alcor
Systems contain these added features. If a program is to be
transported to a computer system using some other implementation of
Pascal, these features should not be used in the program.

D.l Omissions

1) Procedures or functions may not be passed as parameters
to other procedures or functions.

D.2 Extensions

1) Common variables which provide a mechanism for statically
allocating local variables are implemented through the use
two new declaration parts: COMMON and ACCESS.

2) The declaration sections LABEL, CONST, TYPE, VAR, COMMON,
and ACCESS may appear any number of times and in any
order within a block.

3) The Type Transfer Operator allows variables to be referenced
through the use of a type template.

4) Single elements of packed structures may be passed as
parameters.

5) The OTHERWISE clause is implemented in the CASE statement.
If omitted, and there is no match, execution transfers to the
next statement.

6) Identifiers can include the characters' 'and'$'. Also, no
distinction is made between upper and lower case letters.

7) Integer constants or characters may be represented in hex.

- 105 -

8) Mixed mode arithmetic is implemented.

9) The procedures READ or READLN will accept string and boolean
variables.

10) External procedures or functions may be declared. This feature
provides a way of accessing external routines.

11) Input files are not opened until necessary. This eliminates
the synchronization problem when doing interactive input
from a terminal.

12) Labels may range from -32768 to 32767.

13) Alternate symbols are implemented for brackets and the
pointer symbol.

14) The LOCATION function allows the determination
of the address of a variable or a procedure.

15) The SIZE function allows the size of a type
to be determined.

16) The HB function returns the high byte of an integer variable.

17) The LB function returns the low byte of an integer variable.

18) The procedure MESSAGE provides an additional method for
handling string output to a terminal.

19) The procedure CLOSE allows files to be explicitly closed.

20) The procedure ESCAPE allows exiting a block at any point
within the block.

21) The type STRING is a predefined dynamic data type.
A string function library is provided for use with this
data type.

22) Libraries are provided to access the hardware features
of the specific machine.

23) Compiler options are provided to control various functions.

- 106 -

D.3 Other Implementation Characteristics

The following is a list of specific implementation decisions
which are not defined by the standard.

l) Only the first 8 characters of an identifier are stored.
This means that identifier names should be selected such
that the first 8 characters form a unique name.

2> There is a limit of 256 elements for sets, enumerations, CASE
statement labels, and parameters to a procedure or function.

3) Pascal source is restricted to 80 columns.

4) The association of logical files to physical devices is made
either interactively from the terminal or through a procedure
call.

The following is a list of characteristics which are slightly
altered from the standard.

1) Operator precedence has been altered to eliminate the need
for excessive use of parentheses in expressions. The
precedence is the same as that used in BASIC. The
difference is the precedence assigned to the Boolean operators.
The precedence defined by the standard makes the Boolean
operator OR equal in precedence with+ and-, the Boolean
operator AND equal in precedence with*,/, DIV, and MOD,
and NOT has the highest precedence of any operator except
the parentheses. Parentheses may be used when transportable
programs are being written to maintain compatability with
the standard. This alteration of precedence should not
cause any problems when transferring programs written in
standard Pascal to Alcor Pascal.

2) Although structured variables may contain components of type
FILE, the 1/0 routines will accept only simple variable names.
Therefore, use of files within structured variables may be
used only in a restricted manner.

3) A GOTO statement may not reference a label outside the
block in which the statement appears.

- 107 -

E. THE TYPE STRING

The standard Pascal string is defined to be a PACKED
ARRAY OF CHAR. Variables of this type are restricted to
a predetermined size. (ie. the size of the array
must be specified and cannot be altered during program
execution). The predefined type STRING is dynamic.
The size of a variable declared as type STRING is determined
during program execution. variables of this type may change
in size as the program executes. In addition, variables of
type STRING may be used in conjunction with a runtime library
of string manipulation functions.

Syntax of type STRING:

--->STRING--->

Example:

VAR strl, str2, str3: STRING;

Assigning values to dynamic string variables
--

A dynamic string may be created through the use of the
predeclared transfer function BLDSTR. This function
has one parameter which may be either a variable of the
type PACKED ARRAY OF CHAR or a string constant. The
function returns a dynamic string of the same length as the
array or string constant passed to it.

Example:
strl :• BLDSTR('literal string constant');

str2 := BLDSTR(stringconstant);

str3 := BLDSTR(arrayvariable);

- 108 -

The procedures READ and READLN have been extended to accept
variables of the type STRING. When a variable of type STRING
is specified, all characters from the current file pointer to
the end of line mark are read. The size of the string is then
equal to the number of characters read. If a read is performed
while at the end of line mark, the string variable is assigned
an empty string. An empty string is a string of zero length.

Example:
READ(strl);

READLN(filename,str2);

A string variable may be assigned to another string
variable. An assignment between ·two string variables
results in both string variables referencing the same string.
(ie. both string variables point to the same location in
memory)

Example:
strl := str2;

OOTE: For most applications, the preferred method of
assignment between two string variables is through
the use of the library function CPYSTRING. If two
string variables point to the same location and one
is disposed (using DISPOSE), then both string variables
will become undefined.

A string variable may be assigned a string formed by one
of the string manipulation functions in the runtime library.
For example, there is a function provided which may be used
for assignment between two string variables. The function
CPYSTR takes a string variable as a parameter and copys it
to another location. The string appearing on the left side
of the equal sign then references the new location. In other
words, instead of having one copy of the string as in the
above example, there are now two copies.

Example:
strl :a CPYSTR(str2);

- 109 -

Outputing dynamic string variables

The WRITE and WRITELN procedures have been extended to
accept variables of the type STRING. When a dynamic
string is output, the number of characters written is
equal to the length of the string.

Converting a dynamic string into an array

Dynamic strings can only be accessed as a whole. Cie. the
individual characters of the string cannot be accessed)
The predeclared procedure GETSTR will copy a dynamic
string variable into a variable of the type PACKED ARRAY
OF CHAR. It accepts two parameters. The first parameter
is the dynamic string variable. The second parameter is
the array variable. The string is left justified in the
array. If the string is longer than the array, then it is
truncated. If the string is shorter than the array, then the
array is padded with blanks.

Example:
GETSTR(strl, arrayvariable);

Recovering memory used by a dynamic string

The memory used by a dynamic string may be
recovered through the use of the standard procedure
DISPOSE. When a string variable is passed to the DISPOSE
procedure, the memory used by the string is freed and the
string variable becomes undefined. In addition, any other
string variable which points to the same string will become
undefined. Each time a string variable is assigned a value,
it points to a new string and the old string is then lost.
The memory it uses cannot be recovered. Therefore, before
assigning the string variable a new value, the memory used
by the old value should be recovered if space is important.

Example:
strl := BLDSTRC'this is the first value');

DISPOSE(strl);
strl := BLDSTR('this is the second');

- 110 -

Using the string library

There is a long list of string manipulation functions
available in the runtime library. In order for a program
to have access to these functions, it must include an external
declaration for each function used . A file of external
declarations for all the string functions is supplied on
disk. The text editor may be used to insert this file into
the programs that use these functions. The declarations for
any functions which are not used may be deleted if desired.
If only one or two functions are used, you may prefer just to
type in the external declaration.
(See the System Implementation Manual for a description
of the string manipulation functions)

Example use of dynamic strings:

PROGRAM sample;

VAR firstname, lastname,
space, fullname STRING;

FUNCTION CONC(sl,s2: STRING) STRING; EXTERNAL;
(*CONC is a string library function which concatenates 2 strings*>

BEGIN
space:= BLDSTR(' ');
WRITELN(' enter first name');
READLNC f irstname);
WRITELNC' enter last name'>;
READLN(lastname);
fullname := CONC(CONC(firstname,space),lastname);
WRITELN(fullname)

END.

- 111 -

F. I/O PROCEDURES GET and PUT

File buffer variables and the procedures GET and PUT are
I/O features of Pascal which are not often used. The procedures
READ and WRITE are abbreviated forms for accomplishing the same
I/O tasks. However, file buffer variables do provide a means
of performing lookahead in a file. (ie. you may check the value
of the next component in a file before actually reading it)
The ability to perform lookahead may offer some advantages in
certain applications. (eg. the scanner of a compiler)

File Buffer Variables

There is a file buffer variable associated with each file
in a program. The buffer variable is used as temporary
storage for file components as they are passed to or from the
associated file. The buffer variable is the same size and type
as an individual component of the file. The individual
components of TEXT files are characters. Therefore, the file
buffer variable associated with a file of type TEXT has a size
of one byte (8 bits) and is of type CHAR. A file declared as
FILE OF INTEGER consists of individual components of type
INTEGER. The associated file buffer variable will have a size
of two bytes (ie. integers require two bytes of storage) and
be of type INTEGER.

The buffer variable associated with a particular file may
be referenced in the same manner as pointer variables, using
either the A or@ symbol. The buffer variable of a particular
file is referenced by following the logical file name with
either of these two symbols. For example, the buffer variable
of the logical file INPUT is referenced by either INPUTA or
INPUT@.

Files are opened for reading or writing by the procedures
RESET or REWRITE respectively. When a file is opened by RESET,
the buffer variable associated with the file is assigned the
value of the first component in the file. If the file is
empty at the time it is opened, then the value of the buffer
variable is undefined. When a file is opened by REWRITE, its
associated buffer variable is undefined.

File buffer variables may be assigned values using the
assignment statement. For example, OUTPUT@ :: 'A' will assign
the character A to the file buffer variable associated with
logical file OUTPUT. Additionally, the procedures READ, READLN,
and GET will alter values of file buffer varia~les associated
with input files. The buffer variables associated with output
files become undefined after performing the operation specified
by the WRITE, WRITELN, or PUT procedures.

- 112 -

The GET Procedure

The GET procedure assigns the value of the next component
of a file to the buffer variable associated with that file.
If there is no next component Cie. end of file), then EOF on
that file becomes TRUE and the value of the buffer variable
is undefined.

Syntax of GET: (default: file= INPUT)

I
V

----->GET---> (--->file--->) ----->

Examples:

GET

GET{F)

{assigns the next character of the logical
file INPUT to the buffer variable INPUT@}

{assigns the next component of the logical
file F to the buffer variable F@ }

{ READ (f, x) is equivalent to x : = f@ ; GET (f) }

The PUT Procedure

The PUT procedure appends the value of the buffer variable
for a particular file to the end of that file. After the
operation, the value of the buffer variable becomes undefined.

Syntax of PUT: (default: file= OUTPUT)

I
V

----->PUT---> (--->file--->)------>

Examples:

PUT {appends the value of the buffer variable
OUTPUT@ to the end of the logical file OUTPUT}

PUT(F) {appends the value of the buffer variable F@
to the end of the logical file F }

{ WRITE(f,x) is equivalent to f@:=x; PUT(f)

- 113 -

Example use of GET and PUT and file buffer variables:

The following program copies the contents of logical file
•infile• to logical file •outfile•.

PROGRAM filecopy;
VAR infile, outfile
BEGIN

RESET(infile);
REWRITE(outfile);
WHILE NOT EOF(infile) DO

BEGIN

TEXT;

{infile@ = first character}
{outfile@ is undefined}

WHILE NOT EOLN(infile) DO
BEGIN

END.

outfile@ :• infile@;
PUT(outfile);
GET(infile)
END;

READLN(inf ile);
WRITELN(outfile)
END

{define outfile@}
{write outfile@}
{get next character}

{advance to next line}
{advance to next line}

- 114 -

G. USING FILES IN STRUCTURED VARIABLES

This implementation of Pascal does not fully support
the use of files which are components of structured
variables. The following declarations are examples of
the use of files in structured variables:

VAR files : ARRAY (1 •• 5) OF TEXT;
student: RECORD

{array of files}

name : ARRAY[l •• 20) OF CHAR;
scores FILE OF INTEGER; {file in record}
END;

The above declarations are legal but the I/O routines
(see chapter 10 of reference manual) will not accept file
names which are not simple. An example of a simple name
is •outfile•. With the above declarations, the file names
are not simple names. I/O statements like the following
would generate compile errors:

READLN(files[2], .. .
WRITELN(files[5J, .. .
READ(student.scores, •••
WHILE NOT EOF(student.scores) DO • . . •

For applications that need to use files as components of
structures, there is a method of avoiding the simple name
restriction to file names. Simply write your own I/O
routines which act as interface to the Pascal I/O routines .
You may pass non-simple file names to these interface
routines which then use simple names in the actual I/O
operations. (see the example program on the following page)
It is important to note that the file variables should be
passed by reference.(preceded by VAR in the parameter list)

When using files which are components of structures, make
sure that the following two operations are always performed
on the files :

1) Before opening the file, the file must first be
initialized. The following operation will initialize
a file. The filename may be simple or non-simple when
performing this operation.

filename::INTEGER := 0 {initializes file • filename"}

2) Before exiting the program, the file must be explicitly
closed by the CLOSE procedure. Failure to do so will
probably result in loss of the file.

- 115 -

(*$NO INOUT*)
PROGRAM files in structures;

(* Sample program which uses array of files*)
(* This program prompts for a file name and

then sends the file to the line printer*)

VAR CHAR; ch
files: ARRAY[l .. 2) OF TEXT;

PROCEDURE openr(VAR filename : TEXT);
BEGIN

filename::INTEGER:=0;
RESET(filename)

END;

{initialize file}
{open file for reading}

PROCEDURE openw(VAR filename: TEXT; name: STRING);
PROCEDURE SETACNM(VAR f : TEXT; name: STRING); EXTERNAL;

BEGIN
filename::INTEGER:=0;
SETACNM(filename,name);
REWRITE(filename)

END;

{initialize file}
{eliminate prompt for filename}
{open file for writing}

PROCEDURE closefile(VAR f : TEXT);
BEGIN

CLOSE(f) {close file}
END;

PROCEDURE readfile(VAR f : TEXT; VAR data CHAR);
BEGIN

READ(f,data) {read from file}
END;

PROCEDURE writefile(VAR f : TEXT; data CHAR);
BEGIN

WRITE(f,data) {write to file}
END;

- 116 -

PROCEDURE writeline(VAR f : TEXT);
BEGIN

WRITELN(f) {advance to next line of output file}
END;

PROCEDURE readline(VAR f : TEXT);
BEGIN

READLN(f) {advance to next line of input file}
END;

FUNCTION endfile(VAR f : TEXT) : BOOLEAN;
BEGIN

IF EOF(f) THEN endfile :• TRUE else endfile :• FALSE
END;

FUNCTION endline(VAR f: TEXT) : BOOLEAN;
BEGIN

IF EOLN(f) THEN endline :• TRUE else endline :• FALSE
END;

BEGIN
openr(files[l]);
{note to CP/M users--> :L should
openw(files[2],BLDSTR(':L'));
WHILE NOT endfile(files[l]) DO

BEGIN
WHILE NOT endline(files[l]) DO

BEGIN
readfile(files[l],ch);
writefile(files[2],ch);
END;

readline(files[l]);
writeline(files[2)>
END;

closefile(files[l));
closefile(files[2));

END.

- 117 -

{open input file}
be changed to LST:}

{open output file}

H. USING GLOBAL VARIABLES IN EXTERNAL ROUTINES

It is recommended that whenever possible, variables should
be passed to routines rather than allowing the routines to
access global variables. However, sometimes the use of global
variables is necessary. When using global variables in an
external routine (ie compiled separately), it is necessary
to duplicate the exact global environment when the external
routine is compiled. Otherwise, referencing of global variables
within the external routine will not be correct.

The use of the compiler INCLUDE option is very helpful to
insure that the declarations used in the main program are
exactly duplicated in the separately compiled routine. The
following example illustrates the use of global variables in
a separately compiled procedure.

----- file containing the main program----

PROGRAM main;
{the file GLOBAL contains the declarations for the main program}
{$INCLUDE 'GLOBAL'}
PROCEDURE separate; EXTERNAL;
BEGIN

letter:=' a ' ;
.digi t:•10;
separate;

END.

----- file containing the external procedure----

PROGRAM compile separately;
{duplicate the global environment}
{$INCLUDE 'GLOBAL'}
PROCEDURE separate;
BEGIN

WRITELN('letter = ',letter);
WRITELN('digit • ',digit:2);

END;
BEGIN

{$NULLBODY}
END.

VAR

the file 'GLOBAL'

CHAR; letter:
digit : INTEGER;

- 118 -

I. USING COMMON VARIABLES

Often when creating libraries, such as a set of graphics
routines, it is difficult to avoid the need for using global
variables. There is usually a routine which does some initial
processing to define variables which are needed by many of the
other routines in the library. If these variables are local to
the routine, they become undefined when the routine terminates.
Of course, these variables could be retained if they were included
as parameters to the routine. However, often these variables are
not pertinent to the functionality from an end users point of view.
Makin9 them a part of the parameter list complicates the use of
the library routines. Another alternative is to make these variables
global. This is a problem too, because each programmer who uses
the library must know of these variables and make appropriate
declarations for them. Common variables offer a clean solution to
this type of programming problem. They essentially provide the
ability to use global variables in libraries without the need for
programs which use the library to even be aware of their existence.
The following example illustrates the use of common variables.

----- file containing library of routines-----

PROGRAM library;
COMMON xscale, yscale : REAL;

PROCEDURE axis(xmin,xmax,ymin,ymax
ACCESS xscale, yscale;
BEGIN

xscale := 512/(xmax-xmin);
yscale := 256/(ymax-ymin);

END;

PROCEDURE scale(x,y: REAL);
ACCESS xscale, yscale;
VAR ix,iy: INTEGER;
BEGIN

ix:= ROUND(xscale*x);
iy := ROUND(yscale*y);

REAL);

WRITEC'original values: x,y = ',x:6:1,',',y:6:l);
WRITELN('scaled values: x,y = ',ix:3,',',iy:3);

END;

BEGIN
{ $NULLBODY}

END.

user program

PROGRAM user;
VAR i : INTEGER;
PROCEDURE axis(xmin,xmax,ymin,ymax: REAL); EXTERNAL;
PROCEDURE scale(x,y : REAL); EXTERNAL;
BEGIN

axisco.0,10.0,0.0,s.o>;
FOR i := 0 TO 10 DO scale(i,i/2);

END.

- 119 -

Advanced
Development

Package

ADVANCED DEVELOPMENT PACKAGE

TABLE OF CONTENTS

Introduction. 1

Chapter 1

Using the Optimizer •• .. 2
A. When to use it •• 2
B. How to use it • • 2
c . Examples. 4

Chapter 2

the Code Generator.
When to use it •••••••••••

Using
A.
B.
C.

How to use it

5
5
6
7 Examples •.•••••••••••••••

Chapter 3

Mixed Mode Operation ••
A. When to use it
B. How to use it.
C. Examples.

Chapter 4

System Overview • • •••••
A. The Pcode • ••••••
B. The Interpreter ••
C. Runtime Support •••••••• • •
D. Memory Map
E. How the Optimizer Works.

. 9
. 9

. 1010

. 16
• .16

. 16
• •••••••••• • ••••••• • • 1 7

• •• • ••••• • •••.• 1 7
. 18

F. How the Code Generator Works •• 18

Chapter 5

System Output............ •••••••••••••••••• .19
A. Assembly Language ••••••••••••••••••••• • • •• ••• • •••• • 19
B. Assembly Language Structure. . . ••••••• • • • •••• 19
C. Assembly Language Format. ··. • • • • • • • • • • • •••••••• 20
D. Object Format.......................... 22
E. Splitting Object Files. •• • • • •• • •• • .• 23

INTRODUCTION
============

The advanced development package (ADP) is a software tool
which adds a great deal of power and versatility to the TRS-80
Pascal System. The advanced development package consists of
two programs. One program is an optimizer which reduces the
size of programs. The other is a code generator which
increases the speed of programs. The combination gives the
programmer the ability to customize each application program,
allowing for maximum utilization of the systems capabilities.

The need for the optimizer occurs when writing large programs.
All programs require memory to store instructions and memory to
store data. Large programs require a lot of memory to store
instructions. The memory used for storing instructions
subtracts from the memory available for storing data (ie. the
more memory used for storing instructions, the less available
for storing data). The optimizer's purpose is to reduce the
amount of memory used by the instructions in order to make more
memory available for storing data.

The need for the code generator occurs when execution speed
is important. The compiler translates Pascal source
programs to instructions known asp-code. The computer
cannot directly execute instructions in p-code form.
Instead they are executed by another program known as an
interpreter. Maximum execution speed can be achieved by
translating programs to machine code (the form which the
computer hardware can understand and execute directly
without interpretation). The purpose of the code generator
is to translate p-code instructions to machine instructions.
This provides a method for achieving maximum execution
speed.

The addition of the ADP to TRS-80 Pascal provides the
programmer with a very flexible language system which offers a
µnique ability. This is the ability to mix p-code with machine
code. P-code has the advantage of compactness while machine
code has the advantage of speed. The ability to mix the two
makes it possible to customize application programs in order to
achieve optimum performa~ce. The bottle neck areas of a
program may be translated to machine code for maximum speed
while the rest of the program can be left in p-code form. This
allows programs to benefit from both compactness and speed.

- l -

USING THE P-CODE OPTIMIZER
==========================

The optimizer is a program which takes the compiler generated
p-code as input and outputs an optimized form of the same p-code.
Although optimized p-code will execute faster than non
optimized p-code, the main purpose of the optimization is to
make the p-code more compact. The difference in size of the
optimized versus non-optimized p-code is dependent on the types
of language features utilized by the original source program.
Typically, the percent reduction in size due to optimization
will fall in the range of 10 to 30 percent. This size
reduction is sometimes very important. By making the program
smaller, there is more room for data. Often times, it will
enable the execution of a program that otherwise would run out
of memory.

A. When to Use the Optimizer

The optimizer should be used any time program size is an
important factor. A programs memory requirements are determined
by the number of executable instructions and by the number and
sizes of the variables used. The factor that the optimizer
addresses is the number and length of instructions. The
greatest benefit will then be realized when optimizing long
programs (>1000 lines). However, in many cases optimized code
is slightly faster than non-optimized code and even short
programs will sometimes benefit enough to make optimization
worth while. In addition, if a short program requires lots of
data storage, optimization will maximize the amount of memory
available for the data.

B. Bow to Use the Optimizer

Any p-code object file may be used as input to the optimizer
program. The compiler uses a /OBJ extension as a default
for p-code object files. Whole programs or separately compiled
parts of a program may be optimized. In either case, simply
compile the Pascal source and then run the compiler generated
p-code through the optimizer.

NOTE: Only p-code object files may be optimized. Do not
attempt to optimize command files (/CMD) or files
generated by the code generator (/COD)

- 2 -

Using the P-code Optimizer Chapter l

The optimizer program is stored as a command file and
therefore may be executed simply by typing OPTIMIZE from the
top level of the operating system. Like the compiler, it has
two forms for input, a short form and a long form.

The short form:

OPTIMIZE filename

NOTE: Filename may include a drive specification.
Example: DATABASE:l
When a drive is specified the /OPT file is placed on
the same drive as the /OBJ file, otherwise the
operating system decides which drive to use.

The filename should not include an extension. The optimizer
appends the default extension /OBJ to the file name. The
output of the optimizer (the optimized p-code) is placed in a
file of the same name but with the extension / OPT. The / OPT
file may then be used just as any / OBJ file is used in
conjunction with the RUN and LINKLOAD commands.

The long form:

OPTIMIZE
LISTING= listingfile/ext or device (:C,:L,or :D)
INP OBJ= inputfile/ext
OUT-OPT= outputfile/ ext

NOTE: File names may also include drive specifiers.
Example: DATABASE/OPT:!

The long form requires that you enter the full file name,
including extension, for both the input file (non-optimized)
and output file (optimized). The LISTING will show the name
of each separate module in the input p-code file as it is
processed. After each name will appear its original size in
bytes followed by its optimized size in bytes. The LISTING
may be directed to a file or device. Typing a carriage return
will direct the listing to the CRT.

At completion, the optimizer program will display on the
listing the size of the non-optimized p-code used as input and
the optimized p-code generated as output .

ORIGINAL LENGTH= size in bytes
OPTIMIZED LENGTH= size in bytes

- 3 -

Using the P-code Optimizer Chapter 1

C. Example Use of the Optimizer

The following is an example of optimizing the DATABASE/PCL
program which was supplied with the TRS-80 Pascal System. The
example demonstrates use of the optimizer in both the short
and long forms.

step 1 ---> compile the database program

PASCAL DATABASE

step 2 ---> optimize the p-code in file DATABASE/OBJ

short form example:

OPTIMIZE DATABASE

long form example:

OPTIMIZE
LISTING= :L
INP OBJ= DATABASE/OBJ
OUT-OPT= DATABASE/OPT

Both the short form and long form above would
produce the same result. The p-code in file
DATABASE/OBJ would be optimized and output to
the file DATABASE/OPT. The short form would direct
the listing to the CRT while the long form would
direct the listing to the line printer. The listing
output to the line printer would appear as below.

NOCUSTMR 15 13
PRESS 56 49
NEWSPACE 43 29
READDBAS 226 162
WRITEDBA 389 312
CUSTMROU 525 423
READTRAN 269 208
WRITETRA 415 325
DISPLAYD 114 84
LISTTRAN 130 91
LISTCUST 64 50
HEADING 70 64
MAINMENU 743 667
QUERYMEN 462 416
ADDCUSTM 193 153
QUERYTRA 213 161
ADDTRANS 349 266
SEARCHCU 284 218
QUERY 170 132
DATABASE 302 264

ORIGINAL LENGTH = 5437
OPTIMIZED LENGTH= 4418

- 4 -

USING THE CODE GENERATOR
2----=:---=-=---z-------

The code generator is a program which translates p-code
instructions to native machine instructions. Any compiler
generated p-code object file or optimized p-code file may be used
as input to the code generator program. Whole programs or
separately compiled parts of programs may be translated
(codegened) to machine code to increase execution speed.
The speed increase realized from code generation is dependent
on the nature of the program. Typically, codegened programs
will gain a factor of 3 to 5 times increase in speed over that
of pure p-code programs.

A. When to Use the Code Generator

The code generator increases execution speed by translating
p-code instructions to machine instructions. Since each p-code
is equivalent to several machine instructions, code generation
also causes an increase in size. Therefore, the decision of
whether or not to perform code generation on a program must not
only be based on speed requirements, but also on program size.
Typically, code generation will cause the size of the object to
increase by a factor of 2 to 3 over that of pure p-code.

The execution speed of most programs will be adequate even
when left in p-code form. However, programs which do lots of
calculations within loops may benefit significantly through
code generation. Also, when a program contains one or more
procedures which are frequently called, code generation on
these sections of the program can provide quite an improvement
in execution speed. For example, the scanner of the compiler
is a procedure which reads the text of a pascal program and
distributes it to other parts of the compiler. Since it is
called frequently, much the of time spent during a compile is
inside this one procedure. Code generation of the scanner can
increase compile speed significantly. By selecting the parts
of a program which most effect speed and performing code
generation only on those parts, speed can be increased without
significant increase in size.

The determination of whether or not to codegen a program can
be made by observation. First run the program in p-code form.
If execution speed is observed to be slow, the next step is to
determine whether or not to codegen the whole program or
selected parts of the program. As a general rule, small
programs should be totally codegened. The size increase for
small programs will probably be insignificant. However, for
large programs, the size increase may be very significant.

- 5 -

Using the Code Generator Chapter 2

For large programs C >1000 lines), a factor of 2 or 3 increase
in object size will significantly reduce the amount of memory
left for the program data area (stack and heap). In cases
where the size increase would not allow enough room for data
area, selected procedures should be declared as externals and
compiled separately. The procedures selected should be the
ones which most effect execution speed. These procedures may
then be codegened and linked to the main program. This process
will allow for an increase in speed without causing the size to
increase to a level that prevents the program from being
executed.

The code generator performs most of the optimizations
performed by the optimizer. Therefore, it is not necessary to
optimize a program before performing code generation.
B. How to Use the Code Generator

Any compiler generated or optimized p-code file may be used as
input to the code generator. The compiler generates files with
the default extension of /OBJ. The optimizer generates files
with a default extension of /OPT. Whole programs or separately
compiled programs may be codegened. In either case, simply
compile the Pascal source and run the code generator program,
using the compiler generated object file as input. Of course,
optimized p-code files may also be used as input.

The code generator program is stored as a command file and
therefore may be executed simply by typing CODEGEN from the top
level of the operating system. Like the compiler and
optimizer, it has two forms, a short form and a long form.

The short form:

CODEGEN filename

NOTE: Filename may also include a drive specifier.
Example: BENCHMK:2
When a drive is specified, the /COD file is placed
on the same drive as the /OBJ file, otherwise the
operating system decides which drive to use.

The filename should not include an extension. The code
generator appends the default extension /OBJ to the file name.
The output of the code generator is placed in a file of the same
name but with the extension /COD. The /COD file may then be
used just as any /OBJ or /OPT object file in conjunction with
the RUN or LINKLOAD commands. However, do not attempt to
optimize a /COD file. The /COD files contain machine
instructions and the optimizer accepts only p-code instructions.

- 6 -

Using the Code Generator

The long form:

CODEGEN
INP OBJ= inputfile/ext
OUT-COD= outputfile/ext

Chapter 2

DO YOU WANT ASSEMBLY LANGUAGE SOURCE? (Y,N): y or n

NOTE: File names may also include drive specifiers.
Example: BENCHMK/COD:2

The long form requires that you enter the full file name,
including extension, for both input and output files. If
assembly language output is desired, answer Y to the last
prompt, otherwise answer N. If assembly language output is
requested, the following prompt will appear.

SOURCE = file/ext

The additional assembly language output will be directed to the
file specified. The assembly language output is discussed
in chapter 5.

NOTE: The file CODEINIT/DAT must be on line when executing
CODEGEN. CODEGEN uses this file for initialization.

C. Example Use of the Code Generator

The following is an example of codegening a program.

step 1 ---> compile BENCHMK/PCL

PASCAL BENCHMK

step 2 ---> codegen the compiled program

short form example:

CODEGEN BENCHMK

The above example uses BENCHMK/OBJ as input and directs the
codegened output to file BENCHMK/COD.

- 7 -

Using the Code Generator Chapter 2

long form example 1:

CODEGEN
INP OBJ = BENCHMK/OBJ
OUT-COD = BENCHMK/COD
DO YOU WANT ASSEMBLY LANGUAGE SOURCE? CY,N): N

The above example does exactly the same thing as the short
form example.

long form example 2.

CODEGEN
INP OBJ= BENCHMK/OBJ
OUT=COD = BENCHMK/COD
DO YOU WANT ASSEMBLY LANGUAE SOURCE? (Y,N): Y
SOURCE= BENCHMK/SRC

The above example does the same thing as the previous
examples except that it also generates an assembly language
output which is directed to the file BENCHMK/ SRC. The assembly
language output is explained in chapter 5.

- 8 -

MIXED MODE OPERATION

Through the use of the linking loader (the LINKLOAD command>,
pure p-code object (/OBJ) files may be linked with codegened
(/COD) files. Executable programs (/CMD files) may then be
built which contain mixed instructions, both p-code and machine
code. This ability is important when writing large programs.
It allows you to select and codegen only those parts of a
program which most effect the speed of execution. The
remaining parts of the program can be left in p-code form. This
mixed mode operation allows you to increase execution speed
without dramatically increasing program size.

A. When to use Mixed Mode

The use of mixed mode is usually not important until you
start developing large programs. Small programs can be totally
codegened without the size increase becoming a significant
factor. However, completely codegening large programs C >1000
lines) may cause a size increase which will prevent the program
from being executed. The code size of the program can become
so large that there is no longer enough room for data storage.
This of course depends on the data storage requirements of the
program.

When developing large programs, you should not consider code
generation until after executing the program in p-code form.
Observe the execution speed to determine whether or not it is
adequate for your application. If not, the next step is to
decide what areas of the program are most effecting the speed.
Long loops are typical areas of a program where most of the
execution time is spent. Another area might be a low level
procedure or several procedures which are called frequently
throughout a program. After deciding which areas of the
program are effecting execution speed the most, separate them
from the rest of the program and codegen them. The selection
and separation process is easiest if the program is well
modularized. That is, the program is already segmented into
modules, each performing a distinct and well defined function.

- 9 -

Mixed Mode Operation Chapter 3

B. How to Use Mixed Mode

Once the particular areas of a program have been selected for
codegening, they must be separated from the rest of the program.
Any selected modules (procedures and/or functions) should be
declared as externals. (See the Pascal Reference Manual)
The separated areas should then be compiled separately from the
remainder of the program. The compiler nullbody option is
required to compile procedures and/or functions which are
separated from the main program body. Once compiled, the
selected areas may be codegened and then linked to the
remainder of the program using the linking loader. Once
linked, a command file can be built using the BUILD command of
the linking loader.

NOTE: There is an alternative way of separating modules of a
program without separating them in the Pascal source.
The p-code object (/OBJ) file can be split.
(See chapter 5)

C. Example of Mixed Mode Operation

The process for mixed mode operation is summarized in the
following list of steps.

1) Select the areas which most effect program speed.
2) Separate the selected parts of the program from the

remainder of the program. Any selected procedures or
functions should be declared as EXTERNAL in the
main program. Place the separated modules in a
separate file or files. Use the nullbody compiler
option to put the separated modules in a form suitable
for the compiler.

3) Compile all parts of the program.
4) CODEGEN the parts of the program which were selected to

increase execution speed.
5) LINKLOAD all compiled parts of the program together and

build an executable command file.

The following example demonstrates this process. The program
used for this demonstration does not perform any useful
function, but merely demonstrates mixed mode operation. In
reality, a program of the size demonstrated should be totally
translated to machine instructions rather than using mixed
mode. The size increase due to code generation is
insignificant for such small programs.

- 10 -

Mixed Mode Operation

(*$NO INOUT*)
PROGRAM MIXED MODE;

Program listing

TYPE ALPHA-= ARRAY(.1 •• 8.) OF CHAR;
FILENM = ARRAY(.1 •• 72.) OF CHAR;
VAR FN : FILENM;
ID,T : ALPHA;
OUTPUT :TEXT;

PROCEDURE TIME(VAR T: ALPHA); EXTERNAL;

Chapter 3

PROCEDURE SET$ACNM(VAR F : TEXT;VAR FN: FILENM; LEN: INTEGER;
ID: ALPHA); EXTERNAL;

PROCEDURE LOOP;
(* MODULE TO BE CODEGENED *)
VAR CALCULATION,! : INTEGER;
BEGIN

FOR l:•l TO 10000 DO
BEGIN
CALCULATION:=1+2+3+4+5+6+7+8+9+10+11+12+13+14+15
END

END; (* END LOOP *)
BEGIN (* MAIN PROGRAM*)

(* DIRECT OUTPUT TO THE SCREEN*)
FN (• 1.) : •' : ' ; FN (• 2.) : • ' C' ;
ID: • 'OUTPUT ';
SET$ACNM(OUTPUT,FN,2,ID);
REWRITE(OUTPUT);
TIME(T);
WRITELN(OUTPUT,'STARTING TIME: , T);
LOOP;
TIME(T);
WRITELN(OUTPUT,'FINISHING TIME: , T);

END . (* END PROGRAM *)

Step 1) Select the areas effecting execution speed the most.

Examining the above program, you can see that the procedure
named LOOP contains a very long FOR loop (1 to 10000). Inside
this loop is a long calculation. Any long loop containing a
significant number of statements or calculations will benefit
substantially from code generation. The procedure LOOP is
where the majority of program execution time is spent.
Therefore, it is a good choice for code generation.

Step 2) Separate the selected modules from the rest of the
program, declaring them as externals in the main
program and putting them into a form suitable for
compiling.

- 11 -

Mixed Mode Operation Chapter 3

The following listing shows the procedure LOOP separated from
the main program. It is declared as an external procedure
within the main program and the compiler nullbody option is
used to turn the procedure into a valid Pascal program. The
ma.in program and the procedure LOOP must be placed in separate
files. For example, the main program could be placed in a file
named MAIN/PCL and the procedure placed in a file named LOOP/PCL.

(*$NO INOUT*)
PROGRAM MIXED MODE;
TYPE ALPHA-• ARRAY(.1 •• 8.) OF CHAR;
FILENM • ARRAY(.1 •• 72.) OF CHAR;
VAR FN : FILENM;
ID,T : ALPHA;
OUTPUT :TEXT;

PROCEDURE TIME(VAR T: ALPHA); EXTERNAL;
PROCEDURE SET$ACNM(VAR F: TEXT;VAR FN: FILENM; LEN: INTEGER;

ID: ALPHA); EXTERNAL;

PROCEDURE LOOP; EXTERNAL;

BEGIN (* MAIN PROGRAM *)
(* DIRECT OUTPUT TO THE SCREEN*)
FN (.1. > : =-' : ' ; FN (• 2.) : •' C 1

;

ID:•'OUTPUT ';
SBT$ACNM(OUTPUT,FN,2,ID);
REWRITE(OUTPUT);
TIME(T);
WRITELN(OUTPUT,'STARTING TIME: , T);
LOOP;
TIME(T);
WRITELN(OUTPUT,'FINISHING TIME: , T);

END.

PROGRAM SEPARATE COMPILATION;
PROCEDURE LOOP; -
(* MODULE TO BE CODEGENED *)
VAR CALCULATION,! : INTEGER;
BEGIN

FOR I:•l TO 10000 DO
BEGIN
CALCULATION:•1+2+3+4+5+6+7+8+9+10+11+12+13+14+15
END

END; (* END LOOP-*)

BEGIN
(*$NULLBODY*)

END.

(* MAIN PROGRAM *)

- 12 -

Mixed Mode Operation

Step 3) Compile all parts of the program.

TRSDOS Ready
PASCAL MAIN

Chapter 3

TRS80 PASCAL VER: 02.00.00 13000000 00:01:28 05/03/83

1 (*$NO INOUT*)
2 PROGRAM
3 TYPE
4
5 VAR
6
7

MIXED MODE;
ALPHA-= ARRAY(.1 •. 8.) OF CHAR;
FILENM = ARRAY(.1 •• 72.) OF CHAR;
FN : FILENM;
ID,T : ALPHA;
OUTPUT :TEXT;

8
9 PROCEDURE TIME(VAR T: ALPHA); EXTERNAL;

10
11
12

PROCEDURE SET$ACNM(VAR F: TEXT;VAR FN: FILENM; LEN
ID: ALPHA); EXTERNAL;

13 PROCEDURE LOOP; EXTERNAL;
14
15 BEGIN (* MAIN PROGRAM*)
16 (* DIRECT OUTPUT TO THE SCREEN*)
1 7 FN (• 1.) : = ' : ' ; FN (• 2.) : =-' C' ;
18 ID:='OUTPUT ';
19 SET$ACNM(OUTPUT,FN,2,ID);
20 REWRITE(OUTPUT);
21 TIME{T);
22 WRITELN(OUTPUT,'STARTING TIME
23 LOOP;
24 TIME(T);

, T) ;

25 WRITELN(OUTPUT,'FINISHING TIME: ', T);
26 END.

NO ERRORS DETECTED

TRSDOS Ready
PASCAL LOOP

TRS80 PASCAL VER: 02.00.00 13000000

PROGRAM SEPARATE_COMPILATION;
PROCEDURE LOOP;
(* MODULE TO BE CODEGENED *)
VAR CALCULATION,! : INTEGER;
BEGIN

FOR I:=l TO 10000 DO

00:01:28 05/03/83

1
2
3
4
5
6
7
8
9

BEGIN
CALCULATION:=1+2+3+4+5+6+7+8+9+10+11+12+13+14+15
END

10 END;
11 BEGIN

(* END LOOP *)

12 (*$NULLBODY*)
13 END.

NO ERRORS DETECTED

(* MAIN PROGRAM*)

- 13 -

PAGE 1

INTEGER;

PAGE 1

Mixed Mode Operation Chapter 3

Step 4) CODEGEN the parts selected to increase speed.

TRSDOS Ready
CODEGEN LOOP
LOOP

STACK USED= 15915 OF 17344 HEAP USED= 882 OF 3756

Step 5) LINKLOAD all compiled parts of the program and build
an executable command file.

The executable program will be placed in file MIXED/CMD.

TRSDOS Ready
LINKLOAD
L=LOAD, R=RUN, T2TRSDOS, I 2 INIT, S=SYMBOLS, B=BUILD CMD
>> L
FILE = MAIN/OBJ
MIXED MO
32239-BYTES LEFT
>> L
FILE = LOOP/COD
LOOP
32046 BYTES LEFT
>> L
FILE = TRSLIB/OBJ
SETCSR
GOTOXY
GETKEY
INKEY
CLEARSCR
CLEARGRA
WRITECH
WRITESTR
INP
GET$PROC
IO$ERROR
HP$ERROR
TIME
DATE
!TIME
SETPOINT
RSETPOIN
TESTPOIN
USER
CALL$
$MF.MORY
NOBLANK
READCURS
PEEK
POKE
INIT$FIL

- 14 -

Mixed Mode Operation

FILE$STA
SET$ACNM
30669 BYTES LEFT
>> B
STACK SIZE
FILE 2 MIXED/CMD

The program may now be executed by typing MIXED.

TRSDOS Ready
MIXED
STARTING TIME: 00:02:48
FINISHING TIME: 00:02:53

Chapter 3

The execution time spent inside the LOOP procedure may be
calculated by subtracting the starting time from the finishing
time. With the LOOP procedure codegened, the execution time
program with the procedure LOOP not translated to machine
instructions produces a result of 28 seconds, a factor of 5.6
difference in execution speed. This may be tested by linking
the file LOOP/OBJ instead of the file LOOP/COD and running the
program over.

- 15 -

SYSTEM OVERVIEW

The TRS-80 Pascal Compiler is an 8500 line Pascal program
which has itself been compiled into a very compact p-code form.
The p-code form of the compiler has further been reduced in size
by the optimizer supplied with the ADP. The optimization was
necessary in order to make the compiler run in a 48k system.
The p-code form of the compiler was reduced in size by
approximately 28%, from 39k down to 28k.

For larger systems, where more memory is available, selected
parts of the compiler have been translated to machine
instructions by the code generator which is also supplied with
the ADP. The code generator translates p-code instructions to
native machine instructions for the purpose of increasing
execution speed. Since code generation also increases size,
only those sections which effected execution speed the most
were translated to machine instructions.

The ADP provides the tools that were essential in the
development of the compiler. These tools provide the same
capability in the development of application programs.

A. The Pcode

The p-code generated by the compiler was specifically designed
for the Pascal language. The p-code resembles an assembly language
for a stack machine . The p-code was designed to efficiently
implement Pascal functions. Therefore, each p-code instruction
performs a much more complex function than a machine
instruction. In fact, a p-code instruction is equivalent to an
assembly language subroutine. This is the reason that p-code is
so much more compact than native machine code.

B. The Interpreter

The interpreter is a highly optimized assembly language
program whose purpose is to interpret p-codes. Since the
computer hardware cannot understand p-code instructions, the
interpreter is necessary to execute programs which have been
compiled into p-code instructions. The interpreter can be
thought of as a processor whose instruction set is the set of
p-codes. The interpreter has the ability to switch between
p-code and machine code. A particular p-code instruction tells
the interpreter that native machine instructions follow. The
interpreter then points the program counter (PC) register to
the first of the native machine instructions and the hardware

- 16 -

System Overview Chapter 4

begins executing instructions. The ability of the interpreter
to switch between p-code and machine code allows programs to
contain mixed instructions. This means that parts of a program
may be codegened for speed while the remainder of the program
is left in p-code form for compactness.

C. The Runtime Support

The runtime support consists of the interpreter, a loader, a
routine to set up the Pascal stack and heap, and all the
input/output (I/O) routines. When building command files with
the linking loader, all the runtime support is included with
the program being built . Therefore, the total size of an
executable program is determined by adding the size of the
runtime to the size of the object program. The object program
may be p-code, native code, or a mixture of both. The size of
the object also includes any libraries which are linked, such as
the string library .

D. The Memory Map

The following diagram shows the layout of memory useage by
the Pascal system. The runtime area is approximately l0K
bytes long. The memory remaining after subtracting off the
operating system, the runtime, and the program area is
allocated to stack and heap. This is the data area for the
program. The stack is used for storing the programs static
variables. The size of the stack is specified at the time
the program is run (using the RUN command) or built (using
the LINKLOAD command). The remainder of memory is allocated to
the heap which is used for storing dynamic variables.

TRS-80
Hex 0000

4000

5200

FFFF

Rom

Operating
System

Runtime
Support

User
Program

Program
Stack

Program
Heap

- 17 -

System Overview Chapter 4

E. How the Optimizer Works

The optimizer is a program which contains a loader for
loading p-code object files. The loader loads and operates
on one module (procedure and/or function) at a time,
maintaining context as ·it operates on each individual module.
The p-code instructions are analyzed to determine whether or not
they may be compressed into shorter instructions.

Since the compiler is one pass, it must generate some branch
and addressing instructions without knowing the actual
displacements. This makes it necessary to allocate two byte
operands for unknown displacements in order to handle all
cases. However, in many cases the displacements can be
specified using only one byte. The optimizer looks for such
cases and compresses the p-code instructions in order to take
advantage of the need for only a single byte operand.

The optimizer also looks for other types of situations where
compression of instructions is possible. For example, all
multiply by two instructions are converted to add instructions.
In certain cases, consecutive instructions can cancel one
another out (eg. an increment followed by a decrement). The
optimizer eliminates such cases. The optimizer also performs
constant folding (ie. it replaces arithmetic operations
involving only constant operands with a single constant value).
For example, 2+2 would be replaced by the single constant 4.

G. How the Code Generator Works

The code generator is a program which contains a loader for
loading p-code object files. The code generator loads one
module (procedure or function) at a time and translates the
p-code instructions to machine instructions. As noted earlier,
a p-code instruction is equivalent to several machine
instructions, so the translation process will increase the
total number of instructions in the object (/COD) file.

There are a few p-code instructions which perform very complex
functions. To perform equivalent functions in machine code
would require a very large number of instructions. Therefore,
a few selected p-code instructions are not translated to machine
instructions. They are left in p-code form and executed as
subroutine calls to assembly language routines within the
interpreter. Handling complex functions in this manner prevents
the /COD file from becoming as large as it would with complete
translation.

- 18 -

SYSTEM OUTPUT
~-==---------

A. Assembly Language

The native code generator has the capability of producing
assembly language source in addition to object code. It is
not necessary in normal circumstances to assemble the source,
since the object code emitted by CODEGEN is exactly equivalent
to the result of assembling the source. The assembly language
is provided as a means for the programmer to examine the code
produced by the native code generator. In some cases, the
programmer may wish to optimize this code by hand and assemble
it. It is expected that the need to do this will be rare,
since the effort is substantial and the improvements that can
be made are minor. If you wish to assemble the source output
of CODEGEN, then the Alcor Systems multiprocessor assembler
is required.

The source output of codegen is useful to the assembly language
programmer who wishes to link assembly language modules to pascal
and to call them as pascal procedures or functions. A possible
technique to accomplish this is to write a pascal procedure or
function with the same name and calling sequence as the
assembly language routine. The actual code can be left out and
perhaps replaced by a template that merely accesses the
parameters that will be used in assembly language.

The dummy procedure produced above can be compiled by pascal
and run through the code generator with the source option
enabled. Pascal and codegen will generate the proper pascal
procedure or function linkage and will calculate the addresses
of variables and parameters referenced in the body of the
procedure. The generated code can then be used as a skeleton
for the assembly language that actually implements the
functions required.

B. Assembly Language Structure

The assembly language code emitted by CODEGEN is designed for
assembly by the Alcor Systems multiprocessor assembler. This
assembler provides the features required to support pascal and
the ability to mix Z80 code (or 6502 code, or 1802 code, or 8080
code) with P-code. Essential assembler features include the
ability to switch among target processors (Z80 to P-code), the
ability to define and reference external symbols (externals are
resolved at link edit or load time), and the ability to
generate pcode addressing modes (program counter relative,
stack displacement, access to common blocks).

- 19 -

System Output Chapter 5

Each pascal procedure or function forms a separate module.
All symbols, labels, and instructions are local to the module
and reference other modules only via explicit external
references. Modules begin with a module identification. For
pascal generated code, the module name is the name of the
procedure or function truncated to 8 characters. Each
procedure or function also contains an external definition of
the procedure name. This is signaled with the •DEF• assembler
directive. The DEF statement causes the name and its value to
be defined externally, so that other modules can call it.

Switching between modes (native vs. p-code) takes place within
the procedure. Some operations performed by Pascal are
sufficiently complex that they are implemented with
subroutines. Inclusion of the actual code in-line would make
the generated code unreasonably large. When these operations
(such as input, output, or set operations) are performed, the
code generator produces a call to a runtime procedure. These
runtime procedures are already part of the Pcode interpreter.
Rather than reference them again (and require another copy),
the processor is switched back top-code mode and the
interpreter is allowed to perform the operation.

When in mixed mode, all procedure calling is performed using
the p-code interpreter. Since code for each module is separate,
and since modules may be split before being loaded, it is
unknown whether the procedure being called is p-code or native
code. Therefore, every module is entered in p-code mode. If
the module is native code, the processor is switched to native
mode immediately after entry to the procedure.

C. Assembly Language Format

The native code emitted by CODEGEN uses extended 8080
mnemonics. This is done primarily for historical reasons and
since the 8080 instruction set more clearly distinguishes
instructions by format. Use of 8080 extended mnemonics affects
only the source output of codegen, as the Z80 instruction set
is used and converted directly to object code by codegen. Each
instruction occupies· one line. Labels are left justified and
begin with a letter. Each instruction has an op-code which is
either an 8080 instruction or a Z80 instruction. There are
also pseudo-operators (pseudo-ops) that provide instructions to
the assembler rather than generating code.

Operands use standard register names. In many cases, the
names of the Z80 index registers are merged with the op-code
(e.g. PUSHIX pushes the IX index register). This simplifies
interpretation by the assembler. Operands may also use
symbolic labels and constants. Constants are normally
expressed in hexadecimal (base 16) with a leading greater than
sign{">") to specify hexadecimal to the assembler.

- 20 -

System Output Chapter 5

Pseudo-operators

IDT
EQU

DEF
REF

CSEG
QLIST
END
ENTRY
SETCPU

identifies the module and gives it a name
defines the value of the label to the result of
evaluating the operand
defines the operand as an external symbol
specifies that the operand is an external symbol that
is defined in another module
Specifies the name and· size of a common block
Selects the compact format for the assembler listing
Signals the end of the module
Defines an entry point into the module
Selects the processor whose assembly language is
being assembled

- 21 -

System Output Chapter 5

D. Object Format

TRS-80 Pascal uses its own format for object code . The main
reason for this is that support for many of the features of
TRS-80 Pascal are not present in existing object formats. For
example, TRS-80 Pascal supports common blocks for statically
allocated variable storage and the object format must in turn
allow for this.

The p-code generated by the compiler is address independent.
That is, it contains no absolute memory addresses and
can execute without change when loaded anywhere in memory .
All branching and calling of procedures within the pcode is
done relative to the current program counter. Since procedures
are compiled into separate modules, calculation of these
relative addresses must be done when the code is loaded. The
object format supports external references that are program
counter relative.

The object code is taged hexadecimal and is emitted in a
line oriented stream that is compatible with a pascal text
file . In particular, the object code is character oriented and
contains only printable ASCII characters. This allows the
object to be manipulated by text editors or transmitted over
modems. This is not possible with bit oriented formats.

Each item in the object file begins with a tag which is
usually an upper case letter. The tag defines the type of item
and the number and size of the fields to follow. Tags are
followed by one or more fields that specify the information to
be loaded. Three types of fields exist. Bytes are specified
with a two character hexadecimal number. Words consist of a
four character hexadecimal number with the most significant
byte first. Labels consist of eight character names that are
the names of external symbols, common blocks, etc • ••

Following is a table which lists all the tags used in an
object file. All tags are followed by one to three fields of
information, each field being either a byte, word, or label.
The meaning of each tag is also shown.

- 22 -

System Output

Tag Fieldl

A
E
F
G
I
J
Q
M
N
0
p

K
w
X
y

byte

word
word
label
word
word
word
word
word
word
word
word
word

Field2

label
label

word

word

Field3

label

E. Splitting Object Modules

Chapter 5

Meaning

Absolute(non-relocatable byte)
End of module
End of line
Definition of external symbol
External reference declaration
Module name
Reference to external symbol
Definition of common block
Reference to common
Overlay definition
Code (PC) origin
Relative reference to external
Relocatable word
Absolute word
Entry point definition
End of file

Since object files are in ASCII format, they may be edited
with a text editor or used as input to a Pascal program. The
following is a list of the pure pcode output (/OBJ) file for
the LOOP procedure in the mixed mode operation example.
Following it is a listing of the object (/COD) file which
results from running the pcode object through the code
generator. As you can see, the code generation has caused
approximately a factor of 2 increase in size.

Pure Pcode Listing (/OBJ)

JLOOP P0000G0000LOOP A01XOO.OOA38A02AO 3X0001Al5A04Al0A04AO 3X2710A07F
Al5A06A2BA4EXOOOOA03X0001A03X0002A22A03X0003A22A03X0004A22A03XOOOSA22A03F
X0006A22A03X0007A22A03X0008A22A03X0009A22A03XOOOAA22A03XOOOBA22A03XOOOCF
A22A03XOOODA22A03XOOOEA22A03XOOOFA22Al5A02Al0A04A30X0004Al0A06A27A21AB9F
P0014X0047P005DA3AP0001X0006E

- 23 -

System Output Chapter 5

Native Code Listing (/COD)

JLOOP G0003LOOP AC1AEBAE9A01X0006A38A02A55A21X0001ADDA75A04ADDA74F
AOSADDA6EA04ADDA66A05AESA21X2710AESADDA75A06ADDA74A07AC1AE1A78AACAEDA42F
A28A09A47A3FA1FAA8A07AE6A01Al8A02A3EAOOAA7AC2XOOOOA21X0001AESA21X0002AC1F
A09AESA21X0003AClA09AESA21X0004AClA09AESA21X0005AClA09AESA21X0006AClA09F
AE5A21X0007AClA09AESA21X0008AClA09AESA21X0009AClA09AESA21XOOOAAClA09AESF
A21X000BAClA09AESA21X000CAClA09AESA21X000DAClA09AESA21X000EAClA09AESA21F
XOOOFAC1A09ADDA75A02ADDA74A03ADDA6EA04ADDA66A05AESADDAESAE1A01X0004A09F
A4EA23A46A03A70A2BA71ADDA6EA06ADDA66A07AC1AAFAEDA42A20A01A3CAA7ACAW003AF
P0038W00BDP00BDACDW0000A3AE

Each module in an object file begins with the module name.
Therefore, it is possible to split a file containing several
modules into several files, each containing one module. This
is an alternate method of segmenting large programs where it is
desired to perform code generation on only selected parts.

There are two ways to split the object modules. One is to
text edit them. The other more desireable method is to write a
Pascal program to split them. A simple program may be written
to read the pcode (/OBJ) file. Each time a module is
encountered, open a file of the same name as the module and
write the module to that file. Once all the modules are
separated into different files, selected modules may be input
to the code generator and translated to native machine
instructions . The linking loader may then be used to link the
individual modules and build an executable command (/CMD) file.

- 24 -

Index

MASTER CROSS REFERENCE INDEX

B : Beginners Guide E = Editor Manual R: Reference Manual
s = System Guide T ::a: Tutorial A= Advanced Development Package

ABS R73, T36, T39
ACCESS R21
ADD T21
ADDRESS A22
AND R46
APPEND E 2, E 8
ARCTAN R73
ARITHMETIC Al8, R44, T 4, Tl7, Tl9
ARRAY Sl4, R28, T41
ASCII A22, El2,Rl02
ASSEMBLY Sl9, S29, A 7, Al6, Al9
ASSIGNMENT R54, Tl7
AUTO INDENT E 6
BACKUP B 1, B 2, B 3
BEGIN R23, RSS, T 6, T21
BLDSTR S22, S28,Rl08
BLOCK Rl2, Rl3, Rl6, T37
BOOLEAN R25, R52, T 9
BRANCHING R63, T28
BREAK BlS
BUFFERS Sl4
BUILD S 9, Sll, Al0
BYTE Al8, A22
CASE R60, T24, T26
CHAR R25, T 9, Tll
CHARACTER S24
CHR R25, R74
CLEARGRAPHIC Sl6
CLEARSCREEN S 7, Sl6, Sl8
CLOSE R86
CMPSTR S24
CODEGEN S 3, A 1, A 5, Al8
CODEINIT A 7
COMMAND S 4, S 5, S 6, S 7, S 8, S 9, Sl0, Sll, Sl2, Sl6,

S25, S30, S33, A 6, Al4, · E 4, E 7, E 8, Ell
COMMENT Rl0, T40
COMMON Sl0, Al9, A22, A23, R20,Rll9
COMPARE R45, T27

- 1 -

MASTER CROSS REFERENCE INDEX

COMPILE 816, S 4, S 5, Sl5
COMPILER Al6
COMPONENT R35, T41, T46, T48
COMPOSE E 5
COMPOUND R55
CONC S24
CONDITIONAL R58, T30
CONST Rl8, Tll, Tl3
CONSTANTS S15, A20, R 8, R 9, Rl8
cos R73
COUNTER R56, R89
CPYSTR S24
CRT S 5, S 6, S11
CURSOR S17, E 5, T 7
DATABASE S 8, T62
DECLARATION Rl6, T 9, Tll
DECODE! S23
DECODER S23
DEFAULT S 6, S11, A 2, A 6
DEFINE A20
DEFINED S10
DEFINITION A20, A23, Rl6
DELETE S24
DELETION E 6
DELIMITERS Rl0
DEVICE S 6, Sll
DIMENSION R28, T42, T51
DISPOSE R42
DIV R44, Tl8, T21
DO RS7
DOUBLE R88
DOWNTO RS6, T24, T26
DUMMY 819, S 6, S21
DYNAMIC Sl3, S14, Al7, R40, R41, R42, T52
EDITOR 813, E l
ELSE RS8, T28, T31
ENCODEI S23

- 2 -

MASTER CROSS REFERENCE INDEX

ENCODER S23
END R23, RSS, T 6
ENUMERATED R26, T45, T48
ENUMERATION R25
EOB B13, E 2
EOF R73, R76, R77, Tl4
EOLN R34, R73, R76, R77, T14, T34
ERROR B16, B17, B20, B22, Sl2, R98
ESCAPE R65, R75
EXECUTE S 7
EXIT B12, Ell
EXP R73
EXPRESSION R49, T 4, Tl7, T22, T24
EXTENSION A 3,A 6, B 3, B10, B13, 815, S 1, s s, S 6
EXTENSIONS Rl05
EXTERNAL Sl6, Al0, A20, A23, R69, R70
FIELDS A22, R34
FILE R32, R33, R34, R76, T 7, Tll, Tl4
FIND S24, E 9
FOR R56, T23
FORDECL R89
FORWARD R68, T39
FUNCTION Sl6, S23, R22, R65, T32, T36
GET Rll2
GETKEY Sl8
GETSTR Rll0
GLOBAL SlS, R66, R69, R70, T34, T38
GOTO Rl7, R63, T28
GOTOXY Sl7
HARD DISK B 8
HARDWARE Sl6
HB R74
HEADING S 8, Rl3, RlS
HEAP B16, S 6, S 8, Sll, Sl4, SlS, S20, Al7, R41
HELP E 8
HEXADECIMAL S 8, Sll, A20, A22, R 9, R83
HSCROLL El0
IDENTIFIER R 7, T 7, T36, T38
IF R58, R90

- 3 -

MASTER CROSS REFERENCE INDEX

IN R30, R46
INCLUDE R92
INIT S 9, S12
INKEY Sl8
INOUT A12, R89
INP Sl8
INPUT A 3, A 5, R33, R76, T14, Tl6
INSERT 524, E 9
INTEGER R 8, R24, Tl0
INTERPRETER A 1, Al6, Al7
INTERSECTION R32, R44
KEYS Ell
KEYWORD R 9
LABEL A21, A23, R17, R53, R63
LB R74
LOOS B 8, B 9, Bl0, Bll, B12
LEN 523
LIBRARY Sl0, S16, A17, R65, R69, R91
LINKED R21, R65, R91, T54, T62
LINKLOAD S 4, S 9, Al0, Al7
LIST A 3, R93
LISTING B16, S 8
LITERAL R83
LN R61, R73
LOAD S 9, S10
LOADER Al0, A18
LOCAL R66, R67, R71, T34, T38
LOCATION R74
LOGICAL R25, R32, R76
LOOP RSS, R56, R57
MAXINT Rl8
MEMBERSHIP R30, R46, T59
MEMORY 514, A 2, A 6, Al6, Al7, A22, E 2
MERGE E 7
MESSAGE R72, R76, R87
MIXED A 9, Al0, All, A20, A23, R44
MOD R44, R47, RSl, R58, T18, T21

- 4 -

MASTER CROSS REFERENCE INDEX

NATIVE A 5, Al6
NESTED Rl2, R66
NEW R41, R42, T52, T54, T56
NIL R42, R59, T55
NOBLANK Sl7
NOT R46 , R52, T27
NULLBODY Al2, R70, R91
NUMBERS Sl5, R 8
OBJECT S 6, A 6, A22, A23, A24
ODD R73
OF R28, R37, R60
OPEN R77, R78
OPERATOR A20, R44, Tl8
OPTIMIZER S 2, S 3, A 1, A 2, A 6, Al6, Al8
OPTIONS R88, T 1
OR R46, R52
ORD R22, R25, R74, T33
ORDINAL R24
OTHERWISE R60, R61
OUT Sl8
OUTPUT R33, R76, T 6, T 8, Tl4
OVERLAY A23
OVERVIEW S 2, Al6
PACK R28, R74
PACKED R28, R38
PAGE R87
PAGESIZE R94
PARAMETER T 4, T32, T34, T40
PARAMETERS E 8, Rl3, Rl4, Rl5, R50, R63
PARENTHESES R47
PASCAL S 3, s 5, Al6, T 2
PASCALS S 4
PATCH B 8, B 9, 810, Bll
PCODE A 1, A 2, A 5, A 6, A 9, Al6, Al8, Al9
PEEK Sl7
POINTER R40, R41, R42, R43, T52, T54, T56
POKE Sl7
PRECEDENCE R47, Tl7, T19, T22, T27

- 5 -

MASTER CROSS REFERENCE INDEX

PRECISION Sl3, Sl5
PRED R75
PREDECLARED R72
PREDEFINED Rl8, R24, R25, R26, R33, R42, T 3, T 9, Tll, Tl6,

T26, T36, T44, T46, T59
PRINTER S 6
PROCEDURE Rl3, R22, R63, R65, T 3, T32, T34, T36
PROGRAM Rl2, Rl3, T 6
PTRCHECK R97
PUT Rll2
QUIT El0
QUOTE E 9, R 9
RANDOM S25, S26, S27, S28
RANGECHK R96
READ R79, Tl4, T40, T42, T48, TSO
READ CURSOR Sl7
READLN R34, R76, R84, Tl4, T42
REAL Sl3, SlS, R 8, R27, T 3, T 9, Tll, T20, T26
RECORD R34, T 3, T 5, T46, T48
RECURSION R71
RECURSIVE R71, R90, T 5
REFERENCE A20, A23
REGISTER A20,Sl9
RELATIONAL R45, R46, T 4, T27, T29, T59
REPEAT R57, R58, T 4, T30
REPETITIVE R55
REPLACE S24, E 9
RESERVED R 9
RESET R72, R76, R77, R78, Tl4
REWRITE R72, R76, R78, R79
ROLL El0
ROM Sl7
ROUND R74
RSETPOINT Sl6
RUN B18, B19, S 3, S 7
RUNTIME Sl5, Al7
SCOPE R66, R68, R69, T37, T39, T49
SELECTOR R38, T24, T26
SEMICOLON Rll

- 6 -

SEPARATE
SET
SETPOINT
SHIFT
SHOWFILE
SBOWLINE
SIN
SOURCE
SPEED
SPLIT
SQR
SQRT
STACK

STANDARD
STATEMENT
STRING
STRUCTURE
STRUCTURED
SUBRANGE
SUBROUTINES
SUBSET
SUBTRACT
succ
SUPERSET
SYMBOL
SYMBOLS
SYNTAX
TAB
TABLE
TAG
TESTPOINT
TEXT

THEN
TIME
TO
TRSDOS
TRUNC

MASTER CROSS REFERENCE INDEX

A 9, All, A22
R28, R29, R30, R31, R32, T 3, T 5, T59, T61
Sl6
E 4
E 9
E 9
R61, R73
A 8, Al0, A20
A 1, A 5, Al0, Al5, Al6
Al0, A24, E 7
R23, R73
R73
816, S 6, S 7, S 8, S11, S13, Sl4, S15, Al6,
Al7, R65, R71
Rl05
R23, R53
S23, R 9,Rl08, T 7, Tll, Tl4, T41, T43
T 6, T32, T36
Rl2, R28
R27
T 3, T32
R27, R31, T59
T21
R75, T44
R31, T59
Sl0, Sl2, S15
A21, A23, Rl0
R 5
E 6, El0
A22
A22, A23
Sl6
A22, R33, R34, R76, R79, R83, R84, R85, T 8, Tl3,
Tl5, T48, TSO
R58
S19, A 5, A 9
R56
B 1, B 2, B 3, B 4, B 5, B 6
R74, T26

- 7 -

MASTER CROSS REFERENCE INDEX

TYPE Rl9, R24, R27, R28, R40, R48, T 3, T 9, Tll
UNARY Tl8
UNION R31, R44, T59
UNPACK R74
UNTIL R57, T30
USER S19
VAR R20, T 9
VARIANT R35, R37, R38, R39
WHILE R57, T21, T29, T31
WIDELIST R95
WITH R61, R62, T49
WORK FILE E l
WRITE E 2, E 8, R76, R81, T 6, Tl4
WRITECH S17
WRITELN R34, R76, R85, T 6, Tl3, TlS
WRITESTRING S17, Sl8

- 8 -

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION
AUSTRALIA BELGIUM U. K.

91 KURRAJONG ROAD PARC INDUSTRIEL DE NANINNE
MOUNT ORUITT, N.S.W. 2770 5140 NANINNE

BILSTON ROAD WEDNESBURY
WEST MIDLANDS WS10 7JN

04/83-TM Printed in U.S.A.

